• Title/Summary/Keyword: 지진파 비등방성

Search Result 3, Processing Time 0.015 seconds

Relationship between Olivine Fabrics and Seismic Anisotropy in the Yugu Peridotites, Gyeonggi Massif, South Korea (경기육괴 유구 페리도타이트의 감람석 미구조와 지진파 비등방성의 관계)

  • Munjae Park
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.253-261
    • /
    • 2024
  • Olivine, a major mineral in the upper mantle with strong intrinsic elastic anisotropy, plays a crucial role in seismic anisotropy in the mantle, primarily through its lattice preferred orientation (LPO). Despite this, the influence of the microstructure of mylonitic rocks on seismic anisotropy remains inadequately understood. Notably, there is a current research gap concerning seismic anisotropy directly inferred from mylonitic peridotite massifs in Korea. In this study, we introduce the deformation microstructure and LPO of olivine in the mantle shear zone. We calculate the characteristics of seismic anisotropy based on the degree of deformation (proto-mylonite, mylonite, ultra-mylonite) and establish correlations between these characteristics. Our findings reveal that the seismic anisotropy resulting from the olivine LPO in the ultra-mylonitic rock appears to be the weakest, whereas the seismic anisotropy resulting from the olivine LPO in the proto-mylonitic rock appears to be the strongest. The results demonstrate a gradual decrease in seismic anisotropy as the fabric strength (J-index) of olivine LPO diminishes, irrespective of the specific pattern of olivine's LPO. Moreover, all samples exhibit a polarization direction of the fast S-wave aligned subparallel to the lineation. This suggests that seismic anisotropy originating from olivine in mylonitic peridotites is primarily influenced by fabric strength rather than LPO type. Considering these distinctive characteristics of seismic anisotropy is expected to facilitate comparisons and interpretations of the internal mantle structure and seismic data in the Yugu area, Gyeonggi Massif.

Lattice Preferred Orientation(LPO) and Seismic Anisotropy of Amphibole in Gapyeong Amphibolites (경기육괴 북부 가평 지역에 분포하는 각섬암 내부 각섬석의 격자선호방향(LPO)과 지진파 비등방성)

  • Kim, Junha;Jung, Haemyeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.259-272
    • /
    • 2020
  • The seismic properties in the crust are affected by the lattice preferred orientation(LPO) of major minerals in the crust. Therefore, in order to understand the internal structure of the crust using seismic data, information on the LPO of the major constituent minerals and the seismic properties of major rocks in a specific region are needed. However, there is little research on the LPOs of minerals in the crust in Korea. In this study, we collected amphibolites from two outcrops in Wigokri, Gapyeong, located in the nothern portion of Gyeonggi Massif, and we measured the LPOs of major minerals of amphibolite, especially amphibole and plagioclase through EBSD analysis, and calculated seismic properties of amphibolite. Two types of LPOs of amphibole, which are defined as type I and type IV, were observed in the two outcrops of Gapyeong amphibolites, respectively. In the case of amphibolites with the type I LPO of amphibole, large seismic anisotropy of both P- and S-wave was observed, while in the amphibolites with the type IV LPO of amphibole, small seismic anisotropy was observed. This is consistent with previous experimental results. The polarization direction of the fast S-wave was aligned subparallel to the lineation regardless of the LPO types of amphibole. The seismic anisotropy observed in Gapyeong is expected to be helpful to interpret the structure and seismic data within the crust in Gyeonggi Massif.

Rock Deformation and Formation of LPO of Minerals in the Upper Mantle: Implications for Seismic Anisotropy (맨틀상부에서 암석의 변형 및 광물의 격자선호방향(LPO) 형성과 지진파 비등방성과의 연계성)

  • Jung, Hae-Meong
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.249-261
    • /
    • 2012
  • Olivine is a dominant mineral in the upper mantle and is elastically very anisotropic. When olivine is deformed under stress at high pressure and high temperature, lattice preferred orientation (LPO) is formed. It is known that the LPO of olivine is affected by water, stress, and pressure. In this paper, I reviewed the papers dealing with the effects of water, stress, and pressure on the LPO of olivine, summarized the papers on the LPOs of olivine in natural mantle rocks, and discussed its implications for seismic anisotropy in the upper mantle. In addition, I also described four types of LPOs of orthopyroxene recently found in natural spinel lherzolite.