DOI QR코드

DOI QR Code

Effects of Natural Compounds from Various Plant Eradicate the Persister Cell of Edwardsiella tarda Treated with Antibiotics of Florfenicol and Amoxicillin

천연 식물 추출물 첨가에 의한 어류 에드워드증(Edwardsiellosis) 발생균인 Edwardsiella tarda에 항생제 투여로 생성되는 persister cell 저감 효과

  • Kim, Na-Kyoung (Department of Biotechnology, Pukyoung National University) ;
  • Kweon, Dae-Hyuk (Department of Biotechnology and bioeineering, Sungkyunkwan University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyoung National University)
  • Received : 2012.03.16
  • Accepted : 2012.05.17
  • Published : 2012.06.30

Abstract

High concentration of antibiotics has been used to treat the outbreak of edwardsiellosis caused by Edwardsiella tarda in aquaculture. However, not all of the bacteria have been killed with high concentrations of antibiotics treatment by the formation of persister cells with a dormant state. The main objective of this study was to kill persister cell using antibiotics with the addition of natural plant compounds. Antibiotics used in this study consist of 100 mg/ml florfenicol and 100 mg/ml amoxicillin. Ten natural plant compounds with persister cell inhibitor activity to E. coli were obtained from Protein Engineering and Systems Biology Lab. of Sungkyunkwan University. The persister cell inhibition activities of those natural plant compounds were evaluated in test tube. Concentrations of the antibiotics were in the ranges of 25~200 ${\mu}g/ml$. The persister cell formation was observed after 16 hours of culture. Persister cells were killed by antibiotics with natural plant compounds. Among ten natural plant compounds, Gynostemma pentaphyllum, Mallotus japonicus, and Orixa japonica showed persister cell formation inhibition activities. The optimal concentrations of G. pentaphyllum, M. japonicus, and O. japonica for the inhibitor of persister cell formation were 100 ${\mu}g/ml$, 100 ${\mu}g/ml$, and 200 ${\mu}g/ml$, respectively. In vivo study was carried out to evaluate the effect of the antibiotics with natural plant compounds using aquacultural fish, olive flounder, as test animals. G. pentaphyllum, M. japonicus, and O. japonica of 30 ${\mu}g/ml$, 10 ${\mu}g/ml$, and 10 ${\mu}g/ml$ with antibiotics reduced cumulative mortalities, showing the effectiveness of persister cell inhibition.

본 연구는 어류 병원균의 비 유전성을 가지는 항생제 내성균인 persister cell에 관한 연구이다. Persister cell은 기존의 항생제를 분해하는 저항균체(resistant cell)와는 다른 특성으로 항생제에 대한 저항성을 가지는데, 항생제가 존재하는 환경에서 새로운 기작으로 항생제에 대한 내성을 형성한다. 그래서 기존의 양식장에서 어류를 키울 때 어류에 투여하는 항생제는 일반적인 균주의 사멸 항생제 농도보다 더 높은 농도의 항생제를 투여하게 된다. 특히, E. tarda에 대한 다양한 항생제가 개발되어 있지만 내성균의 출현으로 그 효과가 좋지 않으며, 또한 persister cell에 의한 질병 재발을 방지하기 위해 균사멸 농도보다 훨씬 높은 농도의 항생제를 처리하고 있다. Persiser cell의 특이적인 저감 효과를 확인 하기 위하여 선별된 3종의 식물 추출물(돌외, 예덕나무, 상산)을 항생제와 함께 사용하였으며, 돌외와 예덕나무가 100 ${\mu}g/ml$, 상산은 200 ${\mu}g/ml$의 농도에서 persister cell의 사멸 효과를 나타내었다. 또한 넙치를 이용한 12일간의 누적 폐사율을 조사한 결과, 식물 추출물과 항생제 혼합액의 복강 투여구가 항생제 단독의 복강 투여구 보다 낮은 누적 폐사율이 관찰되었고, 항생제에 첨가한 식물 추출물의 농도가 돌외 30 ${\mu}g/ml$, 예덕나무 10 ${\mu}g/ml$, 상산 10 ${\mu}g/ml$의 농도 투여구에서 가장 낮은 누적 폐사율을 나타내었다. 따라서 본 연구에 사용된 세가지 추출물들(돌외, 예덕나무, 상산)은 항균 활성을 가지지 않은 농도에서 항생제와 병용하여 persister cell의 저감 효과가 있음을 확인하였다.

Keywords

References

  1. Ahn, Y. S., Shin, D. H., Baek, N. I., Seong, R. S. and Woo, G. J. 2001. Isolation and Identification of Antimicrobial Active Substance from Mallotus japonicus Muell on Listeria monocytogenes. Korean J. Food Sci. Technol. 33, 271-277.
  2. Al-Dhaheri, R. S. and Douglas, L. J. 2008. Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob. Agents Chemother. 52, 1884-1887. https://doi.org/10.1128/AAC.01473-07
  3. Bigger, J. W. 1944. Treatment of staphylococcal infections with penicillin. Lancet 244, 497-500. https://doi.org/10.1016/S0140-6736(00)74210-3
  4. Choi, S. H. and Kim, K. H. Generation of two auxotrophic genes knock-out Edwardsiella tarda and assessment of its potential as a combined vaccine in olive flounder (Paralichthys olivaceus). 2011. Vet. Immunol. Immunopathol. 31, 58-65.
  5. Choi, S. H., Nam, Y. K. and Kim, K. H. 2010. Novel expression system for combined vaccine production in Edwardsiella tarda ghost and cadaver cells. Mol. Biotechnol. 46, 127-133. https://doi.org/10.1007/s12033-010-9277-2
  6. Heo, J. H., Jung, M. H., Cho, M. H., Kim, G. H, Lee, J. Y., Yang C. B. and Shin, H. C. 2002. The study on fish diseases with reference to bacterial susceptibility to antibiotics in the southern area of Kyeognam. J. Vet. Clin. 19, 19-22.
  7. Keren, I., Kaldalu, N., Spoering, A., Wang, Y. and Lewis, K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Letters 230, 13-18. https://doi.org/10.1016/S0378-1097(03)00856-5
  8. Kim, E. H. and Rhee, G. J. 1999. Activities of ketonic fraction from Leptospermum scoparium alone and synergism in combination with some antibiotics against various bacterial strains and fungi. Yakhak Hoeji 43, 716-728.
  9. Kim, J. S., Rho, S. and Heo, M. S. 2001. Spatial and temporal occurrence of Edwardsiella tarda at flounder farms in jeju. Kor. J. Environ. Biol. 19, 173-181.
  10. Kusuda, R. and Kawai, K. 1998. Bacterial diseases of cultured marine fish in Japan. Fish Pathol. 33, 221-227. https://doi.org/10.3147/jsfp.33.221
  11. Kuwahara, M., Kawanishi, F., Komiya, T. and Oshio, H. 1989. Dammarane saponins from Gynostemma pentaphylllum Makino and isolation of malonylginsenosides-Rb1, -Rd, and malonylgypenoside V. Chem. Pharm. Bull. 37, 135-139. https://doi.org/10.1248/cpb.37.135
  12. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48-56. https://doi.org/10.1038/nrmicro1557
  13. Lim, H. K., Kim, H. S. and Choi, H. S. Protective and therapeutie effects of Malloti cortex extract on carbon tetrachloride- and galactosamine-induced hepatotoxicity in Rats. Biomol. Ther. 7, 35-43.
  14. Maisonneuvea, E., Shakespearea, L. J., Jørgensenb, M. G. and Gerdesa, K. 2011. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. USA 108, 13206-13211. https://doi.org/10.1073/pnas.1100186108
  15. Roberts, M. E. and Stewart, P. S. 2005. Modeling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151, 75-80. https://doi.org/10.1099/mic.0.27385-0
  16. Saijo, G., Nonaka, G. and Nishioka, I. 1990. Gallic acid esters of bergenin and norbergenin from Mallotus japonicus. Phytochem. Lett. 29, 267-270. https://doi.org/10.1016/0031-9422(90)89047-D
  17. Shah, D., Zhang, Z., Khodursky, A. B., Kaldalu, N., Kurg, K. and Lewis, K. 2006. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53-61. https://doi.org/10.1186/1471-2180-6-53
  18. Yoo, M. H., Jeong, J. B., Kim, E. H., Lee, H. H. and Jeong, H. D. 2002. Application of a new conjugation method to fish pathogenic bacteria containing R plasmid for the analysis of drug-resistant status in aquaculture. J. Fish Sci. Technol. 35, 115-121.
  19. Yook, C. S. 1990. Coloured Medicina1 Plants of Korea, pp. 576, Academy Book Co. Korea.