DOI QR코드

DOI QR Code

The Reverse Effect of Salicylic Acid on Cd-induced Growth, Chlorophyll, and Rubisco/Rubisco Activase in Tobacco

카드뮴에 의해 유도된 담배 식물의 생장, 엽록소와 rubisco/rubisco activase에 대한 salicylic acid의 전환 효과

  • Received : 2012.03.15
  • Accepted : 2012.04.06
  • Published : 2012.06.30

Abstract

The influence of salicylic acid (SA) on growth, chlorophyll, and rubisco/rubisco activase and effect of denaturator on rubisco/rubisco activase activity were studied in tobacco plants grown in vitro with cadmium (Cd) treatment. In order to find out the optimum concentration of SA, tobacco plants treated with $10^{-6}$ mM - $10^2$ mM of SA were grown in MS medium for 9 weeks, respectively. The most pronounced effect on in vitro growth was found at $10^{-4}$ mM SA. Among the control (not treated with Cd and SA), SA, Cd, and Cd + SA, the growth and content of chlorophyll were in the sequence of Cd < Cd + SA < control < SA, and significantly higher at SA compared with others. Similar results were also observed in the content and activity of rubisco and rubisco activase. These data suggest that inhibitory effect by Cd was reversed by SA. These results also indicate that SA has a positive effect on Cd. The effect of denaturants on rubisco activity showed in the sequence of Cd < Cd + SA < control < SA. Rubisco activity was promoted by L-cysteine and ${\beta}$-mercaptoethanol, not by urea, thiourea, and guanidium-HCl. These data suggest that urea, thiourea, and guanidium-HCl are able to act as denaturator, and L-cysteine and ${\beta}$-mercaptoethanol are not. None of the five denaturants affected the activity of rubisco activase.

카드뮴에 의해 유도되는 담배의 생장, 엽록소 함량, rubisco와 rubisco activase에 미치는 SA의 영향과, 이에 대한 변성제의 효과를 연구하였다. 담배 기내생장에 대한 SA의 최적농도를 찾기 위해, $10^{-6}$ mM - $10^2$ mM SA를 처리하여 9주간 생장시킨 결과, $10^{-4}$ mM SA에서 가장 높은 생장을 보였다. SA와 카드뮴을 4개의 실험구(대조구, SA, 카드뮴, 카드뮴 + SA)로 하여 생장, 엽록소 함량 및 rubisco와 rubisco activase의 함량과 활성을 측정한 결과, 카드뮴 > 카드뮴 + SA < 대조구 카드뮴 + SA < 대조구 ${\beta}$-mercaptoethanol은 활성을 촉진시켰으며, urea, thiourea, guanidium-HCl은 억제시켰다. 이는 L-cysteine과 ${\beta}$-mercaptoethanol은 변성에 관여하지 않으며, urea, thiourea, guanidium-HCl은 변성에 관여하였음을 의미한다. Rubisco activase의 활성에 대한 변성제들의 영향을 조사한 결과, 5종 모두는 비처리구와 비교하여 현저한 영향은 나타내지 않았다.

Keywords

References

  1. Alvarez, M. E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44, 429-442. https://doi.org/10.1023/A:1026561029533
  2. Barcelo, J., Vazquez, M. D. and Poschenrieder, C. 1988. Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot. Acta 101, 254-261. https://doi.org/10.1111/j.1438-8677.1988.tb00041.x
  3. Bodddi, B., Oravecz, A. R. and Lehoczki, E. 1995. Effect of cadminm on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31, 411-420.
  4. Borsani, O., Valpuesta, V. and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126, 1024-1030. https://doi.org/10.1104/pp.126.3.1024
  5. Chandra, A. and Bhatt, R. K. 1998. Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35, 255-258. https://doi.org/10.1023/A:1006966908357
  6. Chen, Z., Ricigliano, W. and Klessig, D. F. 1993. Purification and charaterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. USA 90, 9533-9537. https://doi.org/10.1073/pnas.90.20.9533
  7. Choudhary, M., Bailey, L. D. and Grant, C. A. 1994. Effect of zinc on cadmium concentration in the tissue of durum wheat. Can. J. Plant Sci. 74, 549-552. https://doi.org/10.4141/cjps94-099
  8. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250. https://doi.org/10.1126/science.266.5188.1247
  9. Drazic, G. and Mihailovic, N. 2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 168, 511-517. https://doi.org/10.1016/j.plantsci.2004.09.019
  10. Eckardt, N. A. and Portis, Jr. A. R. 1997. Heat denaturation profiles of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) and rubisco activase and the inability of rubisco activase to restore activity of heat-denaturated rubisco. Plant Physiol. 113, 243-248.
  11. Gutierrez-Coronado, M. A., Trejo-Lopez, C. and Larque- Saavedra, A. 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol. Biochem. 36, 563-565. https://doi.org/10.1016/S0981-9428(98)80003-X
  12. Hong, J. H. and Kim, T. Y. 2007. Effects of salicylic acid on oxidative stress and UV-B tolerance in cucumber leaves. J. Environ. Sci. 16, 1345-1353. https://doi.org/10.5322/JES.2007.16.12.1345
  13. Inskeep, W. P. and Bloom, P. R. 1985. Extinction cofficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485. https://doi.org/10.1104/pp.77.2.483
  14. Kang, H. M. and Saltveit, M. E. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant 115, 571-576. https://doi.org/10.1034/j.1399-3054.2002.1150411.x
  15. Kneer, R. and Zenk, M. H. 1991. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31, 2663-2667.
  16. Larsson, E. H., Bornman, J. F. and Hakan, A. 1998. Influence of UV-B radiation and $Cd^{2+}$ on chlorophyII fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 323, 1031-1039.
  17. Lee, G. S., Kim, T. Y. and Hong, J. H. 2002. Salicylic acid and water stress effects on growth and proline of cucumber seedlings. J. Environ. Sci. 11, 1165-1172. https://doi.org/10.5322/JES.2002.11.11.1165
  18. Lee, K. R. and Roh, K. S. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotechnol. Biopro. Bioeng. 8, 94-100. https://doi.org/10.1007/BF02940263
  19. Lee, T. T. and Scoog, F. 1965. Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol. Plant 18, 386-402. https://doi.org/10.1111/j.1399-3054.1965.tb06902.x
  20. Metwally, A., Finkemeier, I., Georgi, M. and Dietz, K.-J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 132, 272-281. https://doi.org/10.1104/pp.102.018457
  21. Mishra, A. and Choudhuri, M. A. 1999. Effects of salicylic acid on heavy metal induce membrane degradation mediated by lipooxygenase in rice. Biol. Plant 42, 409-415. https://doi.org/10.1023/A:1002469303670
  22. Munne-Bosch, S., Penuelas, J. and Llusia, J. 2007. A deficiency in salicylic acid alters isoprenoid accumlation in water-stressed NahG transgenic Arabidopsis plants. Plant Sci. 172, 756-762. https://doi.org/10.1016/j.plantsci.2006.12.005
  23. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Pancheva, T. V., Popova, L. P. and Uzunova, A. N. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol. 149, 57-63. https://doi.org/10.1016/S0176-1617(96)80173-8
  25. Panković, D., Plesničar, M., Arsenijević-Maksimović, I., Petrović, N., Sakač, Z. and Kastori, R. 2000. Effects of nitrogen nutrition on phosynthesis in Cd-treated sunflower plants. Ann. Botany 86, 841-847. https://doi.org/10.1006/anbo.2000.1250
  26. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270. https://doi.org/10.1016/S0076-6879(62)05216-7
  27. Raskin, I. 1992. Role of salicylic acid in plants. Ann. Rev. Plant Physiol. Mol. Biol. 43, 439-463. https://doi.org/10.1146/annurev.pp.43.060192.002255
  28. Ray, S. D. 1986. GA, ABA, phenolic interaction and control of growth: phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. Biol. Plant 28, 361-369. https://doi.org/10.1007/BF02902248
  29. Reese, E. N. and Roberts, L. W. 1984. Cadmium uptake and its effects on growth of tobacco cell suspension cultures. Plant Cell Rep. 3, 91-94. https://doi.org/10.1007/BF02441007
  30. Robinson, S. P. and Portis, A. R. Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99. https://doi.org/10.1016/0003-9861(89)90568-7
  31. Roh, K. S. and Chin, H. S. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. J. Life Sci. 15, 453-460. https://doi.org/10.5352/JLS.2005.15.3.453
  32. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8, 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  33. Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6
  34. Shin, D. H., Yu, S. R. and Choi, K. S. 1995. Effect of salicylic acid on anthocyanin synthesis in cell suspension cultures of Vitis vinifera L. Kor. J. Plant Tissue Culture 22, 59-64.
  35. Somashekaraiah, B. V., Padmaja, K. and Praead, A. R. K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgarts): involvement of lipid peroxides in chlorophyill degradation. Physiol. Plant 85, 85-89. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
  36. Srivastava, M. K. and Dwivedi, U. N. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158, 87-96. https://doi.org/10.1016/S0168-9452(00)00304-6
  37. Stiborova, M. 1988. $Cd^{2+}$ ions affect the quaternary structure of ribulose- 1,5-bisphoshate carboxylase from barley leaves. Biochemia Physiol. Planzen 183, 371-378.
  38. Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I. and Sherwood, R. P. 1985. The effect of $Cd^{2+}$on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63, 293-298. https://doi.org/10.1111/j.1399-3054.1985.tb04268.x
  39. Vahala, J., Keinanen, M., Schutzendubel, A., Polle, A. and Kangasjarvi, J. 2003. Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiol. 132, 196-205. https://doi.org/10.1104/pp.102.018630
  40. Vogelli-Large, R. and Wagner, G. J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086-1093. https://doi.org/10.1104/pp.92.4.1086
  41. Wang, D., Karolina, P.-M., Angela, H. C. and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17, 1784-1790. https://doi.org/10.1016/j.cub.2007.09.025
  42. Wang, Z. Y. and Portis, Jr. A. R. 1992. Dissociation of ribulose 1,5-bisphosphate bound to ribulose 1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose 1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol. 99, 1348-1353. https://doi.org/10.1104/pp.99.4.1348

Cited by

  1. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro vol.21, pp.1, 2014, https://doi.org/10.1016/j.sjbs.2013.06.002
  2. Effects of Ethylsalicylic Acid on Growth and Rubisco/Rubisco Activase in Tobacco Plant Cultured under Cadmium Treatment in vitro vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.558
  3. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro vol.21, pp.5, 2014, https://doi.org/10.1016/j.sjbs.2014.04.002