DOI QR코드

DOI QR Code

Electrochemical behaviors of Indium

  • Chung, Yong-Hwa (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2012.02.21
  • Accepted : 2012.03.14
  • Published : 2012.03.30

Abstract

Many researchers focus on indium contained semiconductors and alloy compounds for their various applications. Electrochemists want to obtain indium contained compounds simply via one-step electrodeposition. First of all, electrochemistry of constituent elements must be understood in order to develop the best condition for the electrodeposition of indium contained compounds. We will review the electrochemistry of indium. Equilibria between indium metal and indium ions and the standard electrode potentials of the equilibria will be reviewed. The electrochemical reactions of indium species are affected by surrounding conditions. Thus dependences of electrochemical behaviors of indium metal and indium ions on various parameters will be reviewed.

Keywords

References

  1. J.R. Mills, R.A. King, C.E.T. White, "Indium", C.A. Hampel (ed) Rare metals handbook, Chapman and Hall Ltd, London, 220-238 (1961).
  2. W. Koster and B. Thoma, Z. Metallkd., 46, 291 (1955).
  3. D.G. Avery, D.W. Goodwin, W.D. Lawson and T.S. Moss, Proc. Phys. Soc. B, 67, 761 (1954). https://doi.org/10.1088/0370-1301/67/10/304
  4. S. Ozer and C. Besikci J. Phys D: Appl. Phys., 36, 559 (2003). https://doi.org/10.1088/0022-3727/36/5/321
  5. C.S. Johnson, J.T. Vaughey, M.M. Thackeray, T. Sarakonsri, S.A. Hackney, L. Fransson, K. Edstrom and J.O. Thomas, Electrochem. Commun., 2, 595 (2000). https://doi.org/10.1016/S1388-2481(00)00087-4
  6. M.I. Khan, X. Wang, K.N. Bozhilov and C.S. Ozkan, J. Nanomater., 2008, 698759 (2008).
  7. S.Y. Wang, S.H. Lin and Y.M. Houng, Appl. Phys. Lett., 51, 83 (1987); https://doi.org/10.1063/1.98982
  8. S. Wang, Fundamentals of semiconductor theory and device physics, Prentice-Hall, Englewood Cliffs, New Jersey, 523 (1989).
  9. T.S. Chao, C.L. Lee and T.F. Lei, J. Mater. Sci. Lett., 12, 721 (1993). https://doi.org/10.1007/BF00626698
  10. T. Inushima, V.V. Mamutin, V.A. Vekshin, S.V. Ivanov, T. Sakon, M. Motokawa, S. Ohoya, J. Cryst. Growth, 227-228, 481 (2001). https://doi.org/10.1016/S0022-0248(01)00747-3
  11. A.G. Bhuiyan, A. Hashimoto and A. Yamamoto, J. Appl. Phys., 94, 2779 (2003). https://doi.org/10.1063/1.1595135
  12. T.P. Pearsall and M. Papuchon, Appl. Phys. Lett., 33, 640 (1978). https://doi.org/10.1063/1.90447
  13. W.J. Li, Y.N. Zhou and Z.W. Fu, Appl. Surf. Sci., 257, 2881 (2011). https://doi.org/10.1016/j.apsusc.2010.10.085
  14. V.A. Williams, J. Electrochem. Soc., 113, 234 (1966). https://doi.org/10.1149/1.2423922
  15. J.L. Vossen and E.S. Poliniak, Thin Solid Films, 13, 281 (1972). https://doi.org/10.1016/0040-6090(72)90296-9
  16. A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, Sol. Energ. Mat. Sol. C., 35, 53 (1994). https://doi.org/10.1016/0927-0248(94)90122-8
  17. H.P.T. Nguyen, Y.L. Chang, I. Shih and Z. Mi, IEEE J. Sel. Top. Quant., 17, 1062 (2011). https://doi.org/10.1109/JSTQE.2010.2082505
  18. H. Neff, O.K. Semchinova, A. M.N. Lima, A. Filimonov and G. Holzhueter, Sol. Energy Materials & Solar Cells, 90, 982 (2006). https://doi.org/10.1016/j.solmat.2005.06.002
  19. S.W. Zeng, X.M. Cai and B.P. Zhang, IEEE J. Quantum Elect., 46, 783 (2010). https://doi.org/10.1109/JQE.2009.2039197
  20. S. Wagner and P.M. Bridenbaugh, J. Cryst. Growth, 39, 151 (1977). https://doi.org/10.1016/0022-0248(77)90162-2
  21. A.N. Tiwari, D.K. Pandya and K.L. Chopra, Sol. Energ. Mater., 15, 121 (1987). https://doi.org/10.1016/0165-1633(87)90087-6
  22. M. Kemell, M. Ritala and M. Leskela, Crit. Rev. Solid State Mater. Sci., 30, 1 (2005). https://doi.org/10.1080/10408430590918341
  23. V. S. Saji, S. M. Lee and C. W. Lee, J. Kor. Electrochem. Soc., 14, 61 (2011). https://doi.org/10.5229/JKES.2011.14.2.061
  24. C. J. Smithells, W. F. Gale, T. C. Totemeier (eds) Smithells metals reference book, 8th ed. Elsvier Butterworth-Heinemann, Amsterdam (2004).
  25. A.M. Alfantazi and R.R. Moskalyk, Minerals Engineering, 16, 687 (2003). https://doi.org/10.1016/S0892-6875(03)00168-7
  26. R. Piercy and N.A. Hampson, J. Appl. Electrochem., 5, 1 (1975). https://doi.org/10.1007/BF00625955
  27. V.V. Losev and A.I. Molodov, "Indium", A.J. Bard (ed.) Encyclopedia of electrochemistry of the elements, vol. 6. Marcel Dekker Inc, New York, 1-32, (1976).
  28. S. Hakomori, J. Am. Chem. Soc., 52, 2372 (1930). https://doi.org/10.1021/ja01369a025
  29. A.K. Covington, M.A. Hakeem and W.F.K. Wynne- Jones, J. Chem. Soc., 1963, 4394 (1963).
  30. E.M. Hattox and T. De Vries, J. Am. Chem. Soc., 58, 2126 (1936). https://doi.org/10.1021/ja01302a012
  31. W. Kangro and F. Weingartner, Z. Elektrochem., 58, 505 (1954).
  32. J. N. Butler, J. Phys. Chem., 68, 1828 (1964). https://doi.org/10.1021/j100789a026
  33. W.J. Hamer, M.S. Malmberg and B. Rubin, J. Electrochem. Soc., 103, 8 (1956). https://doi.org/10.1149/1.2430236
  34. L.G. Hepler, Z.Z. Hugus Jr. and W.M. Latimer, J. Am. Chem. Soc., 75, 5652 (1953). https://doi.org/10.1021/ja01118a053
  35. R.E. Visco, J. Phys. Chem., 69, 202 (1965). https://doi.org/10.1021/j100885a030
  36. G. Biedermann and T. Wallin, Acta Chem. Scand., 14, 594 (1960). https://doi.org/10.3891/acta.chem.scand.14-0594
  37. G. Biedermann, Ark. Kem., 9, 277 (1956)
  38. G. Biedermann, Rec. Trav. Chim. Pays-Bas., 75, 716 (1956)
  39. G. Biedermann and D. Ferri, Acta Chem. Scand. A, 36, 611 (1982).
  40. V.V. Losev and A.I. Molodov, Dokl. Akad. Nauk. SSSR, 135, 1432 (1960).
  41. A.I. Molodov and V.V. Losev, Elektrokhimiya, 1, 651 (1965).
  42. R.J. Clark, E. Griswold and J. Kleinberg, J. Am. Chem. Soc., 80, 4764 (1958). https://doi.org/10.1021/ja01551a003
  43. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd English ed., Houston, Tex.: Natl Assn of Corrosion, 439 (1974).
  44. N.A. Hampson and R. Piercy, J. Electroanal. Chem., 51, 91 (1974). https://doi.org/10.1016/S0022-0728(74)80296-2
  45. B. Lovrecek and V. Markovac, J. Electrochem. Soc., 109, 727 (1962). https://doi.org/10.1149/1.2425538
  46. V.V. Losev and A.I. Molodov, Proc. Acad. Sci. USSR. Phys. Chem. Sec. (English Transl.), 135, 1203 (1960);
  47. V.V. Losev and A.I. Molodov, Electrochim. Acta, 6, 81 (1962). https://doi.org/10.1016/0013-4686(62)87027-3
  48. G.M. Budov and V.V. Losev, Proc. Acad. Sci. USSR. Phys. Chem. Sec. (English Transl.), 129, 1113 (1959)
  49. G. M. Budov and V.V. Losev, Russ. J. Phys. Chem., (English Transl.) 37, 784 (1963).
  50. R.E. Visco, J. Electrochem. Soc., 112, 932 (1965). https://doi.org/10.1149/1.2423736
  51. B. Miller and R.E. Visco, J. Electrochem. Soc., 115, 251 (1968). https://doi.org/10.1149/1.2411120
  52. V. Markovac and B. Lovrecek, J. Electrochem. Soc., 112, 520 (1965). https://doi.org/10.1149/1.2423588
  53. V.V. Losev and A.P. Pchelnikov, Electrochim. Acta, 18, 589 (1973). https://doi.org/10.1016/0013-4686(73)85024-8
  54. V. Markovac and B. Lovrecek, J. Electrochem. Soc., 113, 838 (1966). https://doi.org/10.1149/1.2424131
  55. J. Heyrovsky, Discuss. Faraday Soc., 1, 212 (1947). https://doi.org/10.1039/df9470100212
  56. J.E.B. Randles, Discuss. Faraday Soc., 1, 11 (1947). https://doi.org/10.1039/df9470100011
  57. R. Parsons and M.A.V. Devanathan, Trans. Faraday Soc., 49, 673 (1953). https://doi.org/10.1039/tf9534900673
  58. A.M. Bond, J. Electrochem. Soc., 119, 1503 (1972). https://doi.org/10.1149/1.2404032
  59. P. Kondziela and J. Biernat, J. Electroanal. Chem., 61, 281 (1975). https://doi.org/10.1016/S0022-0728(75)80228-2
  60. C. Nanjundiah and R. Narayan, Electrochim. Acta, 26, 203 (1981). https://doi.org/10.1016/0013-4686(81)85004-9
  61. J. Malyszko and E. Malyszko, Monatsh. Chem., 116, 19 (1985). https://doi.org/10.1007/BF00798275
  62. J. Malyszko and D. Gierulska, Monatsh. Chem., 115, 1401 (1984). https://doi.org/10.1007/BF00816338
  63. D. Gierulska and J. Malyszko, J. Electroanal. Chem., 287, 265 (1990). https://doi.org/10.1016/0022-0728(90)80007-S
  64. E. Malyszko and J. Malyszko, Monatsh. Chem., 124, 15 (1993). https://doi.org/10.1007/BF00808506
  65. E. Malyszko and J. Malyszko, Monatsh. Chem., 126, 271 (1995). https://doi.org/10.1007/BF00816095
  66. D. Gierulska and J. Malyszko, Monatsh. Chem., 125, 363 (1994). https://doi.org/10.1007/BF00811854
  67. H.A. Laitinen and C.H. Liu, J. Am. Chem. Soc., 80, 1015 (1958). https://doi.org/10.1021/ja01538a001
  68. U. Anders and J.A. Plambeck, Can. J. Chem., 47, 3055 (1969). https://doi.org/10.1139/v69-504
  69. J. M. Shafir and J.A. Plambeck, Can. J. Chem., 48, 2131 (1970). https://doi.org/10.1139/v70-353
  70. J.H.R. Clarke and R.E. Hester, Inorg. Chem., 8, 1113 (1969). https://doi.org/10.1021/ic50075a018
  71. A. De Guibert and V. Plichon, J. Electroanal. Chem., 90, 399 (1978). https://doi.org/10.1016/S0022-0728(78)80075-8
  72. M.J. Barbier, J. Bouteillon and M. Taoumi, J. Electrochem. Soc., 133, 2502 (1986). https://doi.org/10.1149/1.2108459
  73. Y. Castrillejo, M.A. Garcia, E. Barrado, P. Pasquier and G. Picard, Electrochim. Acta, 40, 2731 (1995). https://doi.org/10.1016/0013-4686(95)00256-E
  74. M. Mohamidi, S. Martinet, J. Bouteillon and J.C. Poignet, Electrochim. Acta, 44, 797 (1998). https://doi.org/10.1016/S0013-4686(98)00239-4
  75. M.K. Carpenter and M.W. Verbrugge, J. Mater. Res., 9, 2584 (1994). https://doi.org/10.1557/JMR.1994.2584
  76. J.-S. Liu and I.-W. Sun, J. Electrochem. Soc., 144, 140 (1997). https://doi.org/10.1149/1.1837376
  77. J. Bouteillon and M. Jafarian, J. C. Poignet and A. Reidet, J. Electrochem. Soc., 139, 1 (1992). https://doi.org/10.1149/1.2069170
  78. M.-H. Yang and I.-W. Sun, J. Chin. Chem. Soc., 51, 253 (2004). https://doi.org/10.1002/jccs.200400040
  79. J.R. Mills, B.G. Hunt and G.H. Turner, J. Electrochem. Soc., 100,136 (1953). https://doi.org/10.1149/1.2781095
  80. M.A. Whitehead, Metal Finishing, 4, 405 (1944).
  81. R.C. Valderrama, M. Miranda-Hernandez, P.J. Sebastina and A. L. Ocampo, Electrochim. Acta, 53, 3714 (2008). https://doi.org/10.1016/j.electacta.2007.11.069
  82. F. Liu, C. Huang, Y. Lai, Z. Zhang, J. Li and Y. Liu, J. Alloy. Compd., 509, L129 (2011). https://doi.org/10.1016/j.jallcom.2010.12.031
  83. Q. Huang, K. Reuter, S. Amhed, L. Deliglanni, L.T. Romankiw, S. Jaime, P.P. Grand and V. Charrier, J. Electrochem. Soc., 158, D57 (2011). https://doi.org/10.1149/1.3518440
  84. S. Omanovic and M. Metikos-Hokovic, Thin Solid Films, 458, 52 (2004). https://doi.org/10.1016/j.tsf.2003.11.271
  85. D. Pottier and G. Maurin, J. Appl. Electrochem., 19, 361 (1989). https://doi.org/10.1007/BF01015237
  86. K.K. Mishra and K. Rajeshwar, J. Electroanal. Chem., 271, 279 (1989). https://doi.org/10.1016/0022-0728(89)80082-8
  87. L. Thouin, S. Massaccesi, S. Sanchez and J. Vedel, J. Electroanal. Chem., 374, 81 (1994). https://doi.org/10.1016/0022-0728(94)03352-8
  88. L. Thouin and J. Vedel, J. Electrochem. Soc., 142, 2996 (1995). https://doi.org/10.1149/1.2048675
  89. M.C.F. Oliveira, M. Azevedo and A. Cunha, Thin Solid Films, 405, 129 (2002). https://doi.org/10.1016/S0040-6090(01)01720-5
  90. T. Ishizaki, N. Saito and A. Fuwa, Surf. Coat. Tech., 182, 156 (2004). https://doi.org/10.1016/j.surfcoat.2003.07.004
  91. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd English ed., Houston, Tex.: Natl Assn of Corrosion, 387 (1974).
  92. T.J. Whang, M.T. Hsieh, Y.C. Kao and S.J. Lee, Appl. Surf. Sci., 255, 4600 (2009). https://doi.org/10.1016/j.apsusc.2008.11.081
  93. T.J. Whang, M.T. Hsieh and Y.C. Kao, Appl. Surf. Sci., 257, 1457 (2010). https://doi.org/10.1016/j.apsusc.2010.08.072
  94. M. Kemell, F. Dartiques, M. Ritala and M. Leskela, Thin Solid Films, 434, 20 (2003). https://doi.org/10.1016/S0040-6090(03)00464-4
  95. S.-I. Hsiu, C.-C. Tai and I.-W. Sun, Electrochim. Acta, 51, 2607 (2006). https://doi.org/10.1016/j.electacta.2005.07.042
  96. S.Z. El Abedin, A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu and F. Endres, Electrochim. Acta, 52, 2746 (2007). https://doi.org/10.1016/j.electacta.2006.08.064

Cited by

  1. Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1–xN (0001) Photoanode Surfaces in Liquid Environments vol.8, pp.12, 2016, https://doi.org/10.1021/acsami.5b12583
  2. Electrochemical deposition of indium: nucleation mode and diffusional limitation vol.52, pp.2, 2016, https://doi.org/10.1134/S1023193516020087
  3. Free indium concentration determined with AGNES vol.612, 2018, https://doi.org/10.1016/j.scitotenv.2017.08.200
  4. Nucleation Process of Indium on a Copper Electrode vol.4, pp.3, 2013, https://doi.org/10.5229/JECST.2013.4.3.93
  5. Electrochemical Atomic Layer Deposition of CuIn (1-x) Ga x Se 2 on Mo Substrate vol.164, pp.14, 2017, https://doi.org/10.1149/2.1231714jes
  6. Electrochemical oxidation assessment and interaction of 2-aminoethanol and N, N-diethylethanamine propagation in acidic medium vol.51, pp.5, 2015, https://doi.org/10.1134/S2070205115050081
  7. Recovery of Indium from Secondary Resources by Hydrometallurgical Method vol.22, pp.2, 2013, https://doi.org/10.7844/kirr.2013.22.2.3
  8. Role of Indium Alloying with Lead as a Means to Reduce the Passivation Phenomena in Lead/Acid Batteries vol.2014, 2014, https://doi.org/10.1155/2014/932654
  9. Electrochemically Fabricated Alloys and Semiconductors Containing Indium vol.3, pp.3, 2012, https://doi.org/10.5229/JECST.2012.3.3.95
  10. A validation experiment on indium recovery by electrowinning of aqueous electrolytes: Optimization of electrolyte composition vol.58, pp.11-12, 2016, https://doi.org/10.3139/120.110953
  11. Chemically robust solution-processed indium zinc oxide thin film transistors fabricated by back channel wet-etched Mo electrodes vol.6, pp.58, 2016, https://doi.org/10.1039/C6RA09684K
  12. The pH-dependent corrosion behavior of ternary oxide semiconductors and common metals and its application for solution-processed oxide thin film transistors circuit integration vol.714, 2017, https://doi.org/10.1016/j.jallcom.2017.04.289
  13. Electrochemistry of Gallium vol.4, pp.1, 2013, https://doi.org/10.5229/JECST.2013.4.1.1