DOI QR코드

DOI QR Code

Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

  • Huang, Ze-Min (Institute of Immunology, PLA, Third Military Medical University) ;
  • Wu, Jun (Chongqing Key Laboratory for Disease Proteomics) ;
  • Jia, Zheng-Cai (Institute of Immunology, PLA, Third Military Medical University) ;
  • Tian, Yi (Institute of Immunology, PLA, Third Military Medical University) ;
  • Tang, Jun (Department of Dermatology the 105th, Hospital of PLA) ;
  • Tang, Yan (Institute of Immunology, PLA, Third Military Medical University) ;
  • Wang, Ying (Chongqing Key Laboratory for Disease Proteomics) ;
  • Wu, Yu-Zhang (Institute of Immunology, PLA, Third Military Medical University) ;
  • Ni, Bing (Institute of Immunology, PLA, Third Military Medical University)
  • Received : 2011.11.21
  • Accepted : 2011.02.07
  • Published : 2012.06.30

Abstract

The retinoid-related orphan nuclear receptor gamma ($ROR{\gamma}$) plays critical roles in regulation of development, immunity and metabolism. As transcription factor usually forms a protein complex to function, thus capturing and dissecting of the $ROR{\gamma}$ protein complex will be helpful for exploring the mechanisms underlying those functions. After construction of the recombinant tandem affinity purification (TAP) plasmid, pMSCVpuro $ROR{\gamma}$-CTAP(SG), the nuclear localization of $ROR{\gamma}$-CTAP(SG) fusion protein was verified. Following isolation of $ROR{\gamma}$ protein complex by TAP strategy, seven candidate interacting proteins were identified. Finally, the heat shock protein 90 (HSP90) and receptor-interacting protein 140 (RIP140) were confirmed to interplay with $ROR{\gamma}$ by co-immunoprecipitation. Interference of HSP90 or/and RIP140 genes resulted in dramatically decreased expression of CYP2C8 gene, the $ROR{\gamma}$ target gene. Data from this study demonstrate that HSP90 and RIP140 proteins interact with $ROR{\gamma}$ protein in a complex format and function as co-activators in the $ROR{\gamma}$-mediated regulatory processes of HepG2 cells.

Keywords

References

  1. Giguere, V., Tini, M., Flock, G., Ong, E., Evans, R. M. and Otulakowski, G. (1994) Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538-553. https://doi.org/10.1101/gad.8.5.538
  2. Carlberg, C., Hooft van Huijsduijnen, R., Staple, J. K., DeLamarter, J. F. and Becker-Andre, M. (1994) RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers. Mol. Endocrinol. 8, 757-770. https://doi.org/10.1210/me.8.6.757
  3. Hirose, T., Smith, R. J. and Jetten, A. M. (1994) ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun. 205, 1976-1983. https://doi.org/10.1006/bbrc.1994.2902
  4. Jetten, A. M. (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal. 7, e003.
  5. Eberl, G., Marmon, S., Sunshine, M. J., Rennert, P. D., Choi, Y. and Littman, D. R. (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64-73. https://doi.org/10.1038/ni1022
  6. Kurebayashi, S., Ueda, E., Sakaue, M., Patel, D. D., Medvedev, A., Zhang, F. and Jetten, A. M. (2000) Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. U.S.A. 97, 10132-10137. https://doi.org/10.1073/pnas.97.18.10132
  7. Sun, Z., Unutmaz, D., Zou, Y. R., Sunshine, M. J., Pierani, A., Brenner-Morton, S., Mebius, R. E. and Littman, D. R. (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288, 2369-2373. https://doi.org/10.1126/science.288.5475.2369
  8. Kang, H. S., Angers, M., Beak, J. Y., Wu, X., Gimble, J. M., Wada, T., Xie, W., Collins, J. B., Grissom, S. F. and Jetten, A. M. (2007) Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol. Genomics. 31, 281-294. https://doi.org/10.1152/physiolgenomics.00098.2007
  9. Chen, Y., Coulter, S., Jetten, A. M. and Goldstein, J. A. (2009) Identification of human CYP2C8 as a retinoid-related orphan nuclear receptor target gene. J. Pharmacol. Exp. Ther. 329, 192-201. https://doi.org/10.1124/jpet.108.148916
  10. Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294. https://doi.org/10.1016/S0092-8674(00)80922-8
  11. Cramer, P. (2004) RNA polymerase II structure: from core to functional complexes. Curr. Opin. Genet. Dev. 14, 218-226. https://doi.org/10.1016/j.gde.2004.01.003
  12. Kumar, N., Solt, L. A., Conkright, J. J., Wang, Y., Istrate, M. A., Busby, S. A., Garcia-Ordonez, R. D., Burris, T. P. and Griffin, P. R. (2010) The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluorometh yl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist. Mol. Pharmacol. 77, 228-236. https://doi.org/10.1124/mol.109.060905
  13. Wang, Y., Kumar, N., Crumbley, C., Griffin, P. R. and Burris, T. P. (2010) A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim. Biophys. Acta. 1801, 917-923. https://doi.org/10.1016/j.bbalip.2010.02.012
  14. Wang, Y., Kumar, N., Nuhant, P., Cameron, M. D., Istrate, M. A., Roush, W. R., Griffin, P. R. and Burris, T. P. (2010) Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORalpha and RORgamma. ACS Chem. Biol. 5, 1029-1034. https://doi.org/10.1021/cb100223d
  15. Wang, Y., Kumar, N., Solt, L. A., Richardson, T. I., Helvering, L. M., Crumbley, C., Garcia-Ordonez, R. D., Stayrook, K. R., Zhang, X., Novick, S., Chalmers, M. J., Griffin, P. R. and Burris, T. P. (2010) Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J. Biol. Chem. 285, 5013-5025. https://doi.org/10.1074/jbc.M109.080614
  16. Johnson, D. R., Lovett, J. M., Hirsch, M., Xia, F. and Chen, J. D. (2004) NuRD complex component Mi-2beta binds to and represses RORgamma-mediated transcriptional activation. Biochem. Biophys. Res. Commun. 318, 714-718. https://doi.org/10.1016/j.bbrc.2004.04.087
  17. Burckstummer, T., Bennett, K. L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G. and Bauch, A. (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013-1019. https://doi.org/10.1038/nmeth968
  18. Augereau, P., Badia, E., Carascossa, S., Castet, A., Fritsch, S., Harmand, P. O., Jalaguier, S. and Cavailles, V. (2006) The nuclear receptor transcriptional coregulator RIP140. Nucl. Recept. Signal. 4, e024.
  19. Trepel, J., Mollapour, M., Giaccone, G. and Neckers, L. (2010) Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10, 537-549. https://doi.org/10.1038/nrc2887
  20. Lee, C. C., Lin, T. W., Ko, T. P. and Wang, A. H. (2011) The hexameric structures of human heat shock protein 90. PLoS One. 6, e19961. https://doi.org/10.1371/journal.pone.0019961

Cited by

  1. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.248
  2. Synergistic induction of TRAIL-mediated apoptosis by anisomycin in human hepatoma cells via the BH3-only protein Bid and c-Jun/AP-1 signaling pathway vol.67, pp.4, 2013, https://doi.org/10.1016/j.biopha.2012.11.005
  3. DGCR14 InducesIl17aGene Expression through the RORγ/BAZ1B/RSKS2 Complex vol.35, pp.2, 2015, https://doi.org/10.1128/MCB.00926-14
  4. The GABABreceptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus vol.47, pp.6, 2014, https://doi.org/10.5483/BMBRep.2014.47.6.162
  5. The ribosomal S6 kinase inhibitor BI-D1870 ameliorated experimental autoimmune encephalomyelitis in mice vol.221, pp.2, 2016, https://doi.org/10.1016/j.imbio.2015.09.008