DOI QR코드

DOI QR Code

Proteome analysis of developing mice diastema region

  • Chae, Young-Mi (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • Jin, Young-Joo (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • Kim, Hyeng-Soo (School of Science and Biotechnology, Kyungpook National University) ;
  • Gwon, Gi-Jeong (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • Sohn, Wern-Joo (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • Kim, Sung-Hyun (Department of Center for Laboratory Animal Resources, Kyungpook National University) ;
  • Kim, Myoung-Ok (Department of Animal Science, Kyungpook National University) ;
  • Lee, Sang-Gyu (School of Science and Biotechnology, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, Kyungpook National University) ;
  • Kim, Jae-Young (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University)
  • Received : 2012.02.01
  • Accepted : 2012.02.11
  • Published : 2012.06.30

Abstract

Different from humans, who have a continuous dentition of teeth, mice have only three molars and one incisor separated by a toothless region called the diastema in the hemi mandibular arch. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. In this study, we evaluated the proteins that modulate the diastema formation through comparative analysis with molar-forming tissue by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) proteome analysis. From the comparative and semi-quantitative proteome analysis, we identified 147 up- and 173 down-regulated proteins in the diastema compared to the molar forming proteins. Based on this proteome analysis, we selected and evaluated two candidate proteins, EMERIN and RAB7A, as diastema tissue specific markers. This study provides the first list of proteins that were detected in the mouse embryonic diastema region, which will be useful to understand the mechanisms of tooth development.

Keywords

References

  1. Thesleff, I. and Sharpe, P. (1997) Signaling networks regulating dental development. Mech. Dev. 67, 111-123. https://doi.org/10.1016/S0925-4773(97)00115-9
  2. Thesleff, I. and Aberg, T. (1999) Molecular regulation of tooth development. Bone 25, 123-125. https://doi.org/10.1016/S8756-3282(99)00119-2
  3. Jernvall, J. and Thesleff, I. (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19-29. https://doi.org/10.1016/S0925-4773(99)00322-6
  4. Peters, H. and Balling, R. (1999) Teeth-where and how to make them. Trends. Genet. 15, 59-65. https://doi.org/10.1016/S0168-9525(98)01662-X
  5. Wang, X. and Fan, J. (2011) Molecular genetics of supernumerary tooth formation. Genesis 49, 261-277. https://doi.org/10.1002/dvg.20715
  6. Turecková, J., Lesot, H., Vonesch, J. L., Peterka, M., Peterkova, R. and Ruch, J. V. (1996) Apotosis is involved in the disappearance of the diastemal dental primordia in mouse embryo. Int. J. Dev. Biol. 40, 483-489.
  7. Yamamoto, H., Cho, S. W., Song , S. J., Hwang, H. J., Lee, M. J., Kim, J. Y. and Jung, H. S. (2005) Characteristic tissue interaction of the diastema region in mice. Arch. Oral. Biol. 50, 189-198. https://doi.org/10.1016/j.archoralbio.2004.11.010
  8. Peterkova, R., Peterka, M., Viriot, L. and Lesot, H. (2000) Dentition development and budding morphogenesis. J. Craniofac. Genet. Dev. Biol. 20, 158-172.
  9. Yuan, G. H., Zhang, L., Zhang, Y. D., Fan, M. W., Bian, Z. and Chen, Z. (2008) Mesenchyme is responsible for tooth suppression in the mouse lower diastema. J. Dent. Res. 87, 386-390. https://doi.org/10.1177/154405910808700412
  10. Porntaveetus, T., Ohazama, A., Choi, H. Y., Herz, J. and Sharpe, P. T. (2011) Wnt signaling in the murine diastema. Eur. J. Orthod. 33, 1-7. https://doi.org/10.1093/ejo/cjp129
  11. Ohazama, A., Haycraft, C. J., Seppala, M., Blackburn, J., Ghafoor, S., Cobourne, M., Martinelli, D. C., Fan, C. M., Peterkova, R., Lesot, H., Yoder, B. K. and Sharpe, P. T. (2009) Primary cilia regulate shh activity in the control of molar tooth number. Development 136, 897-903. https://doi.org/10.1242/dev.027979
  12. Seppala, M., Depew, M. J., Martinelli, D. C., Fan, C. M., Sharpe, P. T. and Cobourne, M. T. (2007) Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J. Clin. Invest. 117, 1575-1584. https://doi.org/10.1172/JCI32032
  13. Andl, T., Reddy, S. T., Gaddapara, T. and Millar, S. E. (2002) Wnt signals are required for the initiation of hair follicle development. Dev. Cell. 2, 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
  14. Ahn, Y., Sanderson, B. W., Klein, O. D. and Krumlauf, R. (2010) Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137, 3221-3231. https://doi.org/10.1242/dev.054668
  15. Li, L., Yuan, G., Liu, C., Zhang, L., Zhang, Y., Chen, Y. and Chen, Z. (2011) Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Dev. Dyn. 240, 1344-1353. https://doi.org/10.1002/dvdy.22596
  16. Martin, A., Ochagavia, M. E., Rabasa, L. C., Miranda, J., Fernandez-de-Cossio, J. and Bringas, R. (2010) BisoGenet: a new tool for gene network building, visualization and analysis. BMC ioinformatics. 11, 91. https://doi.org/10.1186/1471-2105-11-91
  17. Lee, K. K., Haraguchi, T., Lee, R. S., Koujin, T., Hiraoka, Y. and Wilson, K. L. (2001) Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci.114, 4567-4573.
  18. Ben, Y. R., Toutain, A., Arimura, T., Demay, L., Massart, C., Peccate, C., Muchir, A., Llense, S., Deburgrave, N., Leturcq, F., Litim, K. E., Rahmoun-Chiali, N., Richard, P., Babuty, D., Recan-Budiartha, D. and Bonne, G. (2007) Multitissular involvement in a family with LMNA and EMD mutations: Role of digenic mechanism. Neurology 68, 1883-1894. https://doi.org/10.1212/01.wnl.0000263138.57257.6a
  19. Takano, M., Takeuchi, M., Ito, H., Furukawa, K., Sugimoto, K., Omata, S. and Horigome, K. (2002) The binding of lamin B receptor to chromatin is regulated by phosphorylation in the RS region. Eur. J. Biochem. 269, 943-953. https://doi.org/10.1046/j.0014-2956.2001.02730.x
  20. Bonne, G., Raffaele, M., Barletta, D., Varnous, S., Becane, H. M., Hammouda, E. H., Merlini, L., Muntoni, F., Greenberg, C. R., Gary, F., Urtizberea, J. A., Duboc, D., Fardeau, M., Toniolo, D. and Schwartz, K. (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet 21, 285-288. https://doi.org/10.1038/6799
  21. Peralta, E. R., Martin, B. C. and Edinger, A. L. (2010) Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence. J. Biol. Chem. 285, 16814-16821. https://doi.org/10.1074/jbc.M110.111633
  22. Kinchen, J. M., Doukoumetzidis, K., Almendinger, J., Stergiou, L., Tosello-Trampont, A., Sifri, C. D., Hengartner, M. O. and Ravichandran, K. S. (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556-566. https://doi.org/10.1038/ncb1718
  23. Sakurai, A., Maruyama, F., Funao, J., Nozawa, T., Aikawa, C., Okahashi, N., Shintani, S., Hamada, S., Ooshima, T. and Nakagawa, I. (2010) Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J. Biol. Chem. 285, 22666-22675. https://doi.org/10.1074/jbc.M109.100131
  24. Irina Perdivara, I., Deterding, L. J., Przybylski, M. and Tomer, K. B. (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins. J. Am. Soc. Mass. Spectrom. 21, 1114-1117. https://doi.org/10.1016/j.jasms.2010.02.016
  25. Gershon, D. (2005) Mass spectrometry: gaining mass appeal in proteomics. Nat. Methods. 2, 465-472. https://doi.org/10.1038/nmeth0605-465

Cited by

  1. Three-dimensional analysis of the early development of the dentition vol.59, 2014, https://doi.org/10.1111/adj.12130
  2. Molecular and engineering approaches to regenerate and repair teeth in mammals vol.71, pp.9, 2014, https://doi.org/10.1007/s00018-013-1518-7