DOI QR코드

DOI QR Code

Aluminum Solubility of Andisols in Jeju Island, Korea

제주도 Andisol 토양의 Al-용해도 특성

  • Received : 2012.03.26
  • Accepted : 2012.04.24
  • Published : 2012.04.28

Abstract

The solubility of aluminum for two Andisol profiles formed on pyroclastic materials and basaltic rocks from Jeju Island, Korea was investigated. It is found that high organic carbon content and $Al_{pyrophosphate}/Al_{oxalate}$ ratios in the A horizons, suggesting the substantial amounts of reactive Al are associated with organic matter, whereas the low organic carbon content and the $Al_{pyrophosphate}/Al_{oxalate}$ ratios in the Bo horizons indicate that a major part of the reactive Al should be bound inorganically. The differential FT-IR spectra following acid-oxalate dissolution and heating up to 150 and $350^{\circ}C$, and transmission electron microscope (TEM) observation confirm that imogolite is in the Bo horizon. Our results of equilibration experiments demonstrate that the Al solubility in the Bo horizon for Andisols can be clarified by the congruent dissolution model for imogolite-type material (ITM), rather than by the simultaneous equilibrium with both ITM and Al hydroxy-interlayered aluminosilicate. With results from dialysis and aging procedures, it is noted that the formation of a proto imogolite sol showing its transformation to imogolite, which supports the congruent dissolution of ITM primarily controlling the Al solubility of Andisols in Jeju Island, Korea.

본 연구에서는 제주도 토양 중 화산쇄설암과 현무암을 모재로 발달하는 두 Andisol 토양의 Al 용해도 특성을 규명하고자 하였다. 토양 A층은 높은 유기물함량과 $Al_{pyrophosphate}/Al_{oxalate}$ 비를 나타내는 반면, 토양 Bo층은 낮은 유기물함량과 $Al_{pyrophosphate}/Al_{oxalate}$ 비를 나타낸다. 이는 반응성 Al이 A층에서는 대부분이 유기물과 결합한 형태로 존재하고 있는 반면, 토양 Bo층에서는 무기질의 광물과 결합하고 있음을 지시한다. Acid-oxalate 용해처리, 그리고 150 및 $350^{\circ}C$ 열처리 전후의 FT-IR 스펙트럼 비교, 투과전자현미경(TEM)을 이용한 관찰결과, 토양 Bo층에 상당량의 이모골라이트(Imogolite)가 존재함을 확인하였다. 이들 시료에 대한 Al-용해도 특성규명을 위한 Batch 평형실험결과, 토양 Bo층에서의 Al-용해도는 ITM(Imogolite-type material)과 Al hydroxy-interlayered aluminosilicate에 의한 Simultaneous equilibrium보다는 ITM의 Congruent dissolution model을 따르는 것으로 나타났다. 투석과 Aging과정 후의 용해도 특성 변화는 PI(Proto imogolite) sol의 생성이 되고, 이들의 이모골라이트로의 상전이가 Al-용해도에 영향을 주었음을 지시한다. 이러한 결과는, 실내실험 결과를 보완해주는 것으로, 제주도 Andisol토양에서의 Al-용해도 특성이 ITM에 의한 Congruent dissolution에 의해 조절되고 있음을 지시한다.

Keywords

References

  1. Ball, J.W. and Nordstrom, D.K. (1991) User's manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace, and redox elements in natural water. U.S. Geological Survey Open-File Report, p.91-183.
  2. Berggren, D. and Mulder, J. (1995). The role of organic matter controlling aluminum solubility in acidic mineral soil horizons. Geochim. Cosmochim. Acta. v.59, p.4167-4180. https://doi.org/10.1016/0016-7037(95)94443-J
  3. Bloom, P.R., McBride, M.B. and Weaver, R.M. (1979) Aluminum organic matter in acid soils: Buffering and solution aluminum aluminum activiy. Soil Sci. Soc. Am. J., v.43, p.488-493. https://doi.org/10.2136/sssaj1979.03615995004300030012x
  4. Browne, B.A. and Driscoll, C.T. (1992) Soluble aluminium silicates: stoichiometry, stability, and implications for environmental geochemistry. Science, v.256, p.1667-1670. https://doi.org/10.1126/science.256.5064.1667
  5. Childs, C.W., Parfitt, R.L. and Lee, R. (1983) Movement of aluminum and an inorganic complex in some podzolized soils, New Zealand. Geoderma, v.29, p.139-155.
  6. Cronan, C.S., Walker, W.J. and Bloom, P.R. (1986) Predicting aqueous aluminium concentrations in natural waters. Nature, v.324, p.240-243.
  7. Dahlgren, R.A., Driscoll, C.T. and McAvoy, D.C. (1989) Aluminum precipitation and dissolution rates in Spodosol Bs horizons in the northeastern U.S.A. Soil Sci. Soc. Am. J., v.53, p.1045-1052. https://doi.org/10.2136/sssaj1989.03615995005300040010x
  8. Dahlgren, R.A. and Saigusa, M. (1995) Aluminum release rates from allophanic and Non-allophanic andosols. Soil Sci. Plant Nutr., v.40, p.125-136.
  9. Dahlgren, R.A. and Ugolini, F.C. (1989) Formation and stability of imogolite in a tephritic Spodosol, Cascade Range, Washington, U.S.A. Geochim. Cosmochim. Acta, v.53, p.1897-1904. https://doi.org/10.1016/0016-7037(89)90311-6
  10. Dahlgren, R.A. and Walker, W.J. (1993) Aluminm release rates from selected Spodosol Bs horizons: Effect of pH and solid-phase aluminum pools. Geochim. Cosmochim. Acta, v.57, p.57-66. https://doi.org/10.1016/0016-7037(93)90468-C
  11. David, M.B. and Driscoll, C.T. (1984) Aluminum speciation and equilibria in soil solutions of a haplorthod in the Adirondack mountains (New York, USA). Geoderma, v.33, p.297-318. https://doi.org/10.1016/0016-7061(84)90031-4
  12. Davies, C.W. (1962) Ion Association. Butterworth, London.
  13. Farmer, V.C. (1987) The role of inorganic species in the transport of aluminium in poszols. In D. Righi, and A. Chauvel (ed.). Podzols et podzolizaion, AFES et INRA, Paris.
  14. Farmer, V.C. and Fraser, A.R. (1982) Chemical and colloidal stability of soils in the $Al_2O_3-Fe_2O_3-SiO_2-H_2O$ system: their role in podzolization. J. Soil Sci., v.33, p.737-742. https://doi.org/10.1111/j.1365-2389.1982.tb01803.x
  15. Farmer, V.C. and Lumsdon, D.G. (1994) An assessment of complex formation between aluminium and silicic acid in acidic solutions. Geochim. Cosmochim. Acta, v.58, p.3331-3334. https://doi.org/10.1016/0016-7037(94)90088-4
  16. Farmer, V.C., Russel, J.D. and Berrow, M.L. (1980) Imogolite and proto-imogolite allophane in spodic horizons: Evidence for a mobile aluminum silicate complex in podzol formation. J. Soil Sci., v.31, p.673-684. https://doi.org/10.1111/j.1365-2389.1980.tb02113.x
  17. Fordham, A.W. and Norrish, K. (1983) The nature of soil particles particulary those reacting with arsenate in a series of chemically treated samples. Aust. J. Soil Res., v.21, p.455-477. https://doi.org/10.1071/SR9830455
  18. Gustafsson, J.P., Berggren, D., Simonsson, M., Zysset, M. and Mulder, J. (2001) Aluminum solubility mechanisms in moderately acid Bs horizons of podzolized soils. Eur. J. Soil Sci., v.52, p.655-665. https://doi.org/10.1046/j.1365-2389.2001.00400.x
  19. Gustafsson, J.P., Bhattacharya, P., Bain, D.C., Fraser, A.R. and McHardy, W.J. (1995) Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma, v.66, p.167-184. https://doi.org/10.1016/0016-7061(95)00005-9
  20. Gustafsson, J.P., Lumsdon, D.G. and Simonsson, M. (1998) Aluminum solubility characteristics of spodic B horizons containing imoglite-type materials. Clay Miner., v.33, p.77-86. https://doi.org/10.1180/000985598545444
  21. Lalende, H. and Hendershot, W.H. (1986) Aluminum speciation in some synthetic systems: somparison of the fast-oxine, pH 5.0 extraction and dialysis methods. Can. J. Fish. Aqua. Sci., v.43, p.231-234. https://doi.org/10.1139/f86-027
  22. Lofts, S., Woof, C., Tippng, E., Clarke, N. and Mulder, M. (2001) Modelling pH buffering and aluminum solubility in European forest soils. European J. Soil Sci., v.52, p.189-204. https://doi.org/10.1046/j.1365-2389.2001.00358.x
  23. Lumsdon, D.G. and Farmer, V.C. (1995) Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminum solutions. Eur. J. Soil Sci., v.46, p.179-186. https://doi.org/10.1111/j.1365-2389.1995.tb01825.x
  24. Matzner, E. (1992) Acidification of forests and forest soils: Current status. Stud. Env. Sci., v.50, p.77-86. https://doi.org/10.1016/S0166-1116(08)70103-1
  25. Matzner, E., Pijpers, M., Holland, M. and Manderscheid, B. (1998) Aluminum in Soil Solutions of Forest Soils: Influence of Water Flow and Soil Aluminum Pools. Soil Sci. Soc. Am. J., v.62, p.445-454. https://doi.org/10.2136/sssaj1998.03615995006200020022x
  26. Mulder, J. and Stein, A. (1994) The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition. Geochim. Cosmochim. Acta, v.58, p.85-94. https://doi.org/10.1016/0016-7037(94)90448-0
  27. Mulder, J., van Breeman, N. and Eijck, H.C. (1989) Depletion of soil aluminium by acid deposition and implications for acid neutralization. Nature, v.337, p.247-249. https://doi.org/10.1038/337247a0
  28. Nordstrom, D.K. and May, H.M. (1996) Aqueous Equilibrium Data for Mononuclear Aluminum Species. p. 39-80. In G. Sposito (ed.). The environmental chemistry of aluminum, Lewis Publishers.
  29. Paces, T. (1985) Sources of acidification in Central Europe estimated from elemental budgets in small basins. Nature, v.315, p.31-36. https://doi.org/10.1038/315031a0
  30. Palmer, D.A. and Wesolowski, D.J. (1992) Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to $70^{\circ}C$. Geochim. Chosmichim. Acta, v.56, p.1093-1111. https://doi.org/10.1016/0016-7037(92)90048-N
  31. Parfitt, R.L. and Childs, C.W. (1988) Estimation of Forms of Fe and Al: A Review, and Analysis of Contrasting Soils by Dissolution and Moessbauer Methods. Aust. J. Soil Res., v.26, p.121-144. https://doi.org/10.1071/SR9880121
  32. Parfitt, R.L. and Henmi, T. (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophone in soil clays. Soil Sci. Plant Nut., v.28, p.183-190. https://doi.org/10.1080/00380768.1982.10432435
  33. Parkhurst, D.L. and Appelo, C.A.J. (1999) User's Guide to PHREEQC (Version 2)-A Computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259.
  34. Plyasunov, A.V. and Grenthe, I. (1994) The temperature dependence of stability constants for the formation of polynuclear cationic complexes. Geochim. Cosmochim. Acta, v.58, p.3561-3582. https://doi.org/10.1016/0016-7037(94)90150-3
  35. Pokrovski, G.S., Schott, J., Harrichoury, J.-C. and Sergeyev, A.S. (1996) The stability of alumino-silica complexes in acidic solutions from 25 to $150^{\circ}C$. Geochim. Cosmochim. Acta, v.60, p.2495-2501. https://doi.org/10.1016/0016-7037(96)00123-8
  36. Ross, G.J. and Kodama, H. (1979) Evidence for imogolite in Canadian soils. Clays Clay Miner., v.27, p.297-300. https://doi.org/10.1346/CCMN.1979.0270410
  37. Simonsson, M. and Berggren, D. (1998) Aluminum solubility related to secondary solid phases in upper B horizons with spodic characteristics. Eur. J. Soil Sci., v.49, p.317-326. https://doi.org/10.1046/j.1365-2389.1998.00153.x
  38. Soil Survey Staff (1998) Keys to Soil Taxonomy. p.328. USDA.
  39. Song, K.C. and Yoo, S.H. (1994) Andic properties of major soils in Cheju Island III. Condition for formation of allophane. J. Korean Soc. Soil Sci. Fert., v.27, p.149-157.
  40. Song, Y., Paterson, E., Moon, H.-S. and Lee, G.H. (1998) Mineralogical characterization of Andisols in Cheju Island. 53rd Annual Conference of the Geological Society of Korea, Geological Society of Korea, p.58.
  41. Su, C. and Harsh, J.B. (1994) Gibbs free energies of formation at 298 K for imogolite and gibbsite from solubility measurements. Geochim. Cosmochim. Acta, v.58, p.1667-1677. https://doi.org/10.1016/0016-7037(94)90566-5
  42. Su, C., Harsh, J.B. and Boyle, J.S. (1995) Solubility of hydroxy-aluminum interlayers and imogolite in a spodosol. Soil Sci. Soc. Am. J., v.59, p.373-379. https://doi.org/10.2136/sssaj1995.03615995005900020015x
  43. Takahashi, T. and Dahlgren, R.A. (1998) Possible control of aluminum solubility by 1 M KCl treatment in some soils dominated by aluminum-humus complexes. Soil. Sci. Plant Nutr., v.44, p.43-51. https://doi.org/10.1080/00380768.1998.10414425
  44. Takahashi, T., Fukuoka, T. and Dahlgren, R.A. (1995) Aluminum solubility and release rates from soil horizons dominated by aluminum-humus complexes. Soil. Sci. Plant Nutr., v.41, p.119-131. https://doi.org/10.1080/00380768.1995.10419565
  45. Tait, J.M., Yoshinaga, N. and Mitchell, B.D. (1978) The occurrence of imogolite in some Scottish soils. Soil Sci. Plant Nut., v.24, p.145-151. https://doi.org/10.1080/00380768.1978.10433089
  46. Thomsen, J., Johnson, K.S. and Petty, R.L. (1983) Determination of reactive silicate in seawater by flow injection analysis. Anal. Chem., v.55, p.2378-2382. https://doi.org/10.1021/ac00264a039
  47. Turner, R.C. and Brydon, J.E. (1965) Factors affecting the solubility of $Al(OH)_3$ precipitated in the presence of montmorillonite. Soil Sci., v.100, p.176-181. https://doi.org/10.1097/00010694-196509000-00005
  48. Turner, R.C. and Brydon, J.E. (1967) Effect of length of time on some properties of suspensions of Arizona bentonite, illite, and kaolinite in which aluminum hydroxide is precipitated. Soil Sci., v.103, p.111-117. https://doi.org/10.1097/00010694-196702000-00004
  49. van Breemen, N., Driscoll, C.T. and Mulder, J. (1984) Acid deposition and interna,l proton sources in acidification of soils and waters. Nature, v.307, p.599-604. https://doi.org/10.1038/307599a0
  50. van Hees, P.A.W., Lundstrom, U.S., Starr, M. and Giesler, R. (2000) Factors influencing aluminum concentrations in soil solution form podzols. Geoderma, v.94, p.289-310. https://doi.org/10.1016/S0016-7061(98)00138-4
  51. Wada, S.I. and Kakuto, Y. (1999) Solubility and standard Gibbs free energy of formation of natural imogolite at $25^{\circ}C$ and 1atm. Soil Sci. Plant Nutr., v.45, p.947-953. https://doi.org/10.1080/00380768.1999.10414344
  52. Walker, W.J., Cronan, C.S. and Bloom, P.R. (1990) Aluminum solubility in organic soil horizons from northern and southern forested watersheds. Soil Sci. Soc. Am. J., v.54, p.369-374. https://doi.org/10.2136/sssaj1990.03615995005400020012x
  53. Wang, C., McKeague, J.A. and Kodama, H. (1986) Pedogenic imogolite and soil environments: case study of spodosols in Quebec, Canada. Soil Sci. Soc. Am. J., v.50, p.711-718. https://doi.org/10.2136/sssaj1986.03615995005000030032x
  54. Zysset, M., Blaser, P., Luster, J. and Gehring, A.U. (1999) Aluminum Solubility Control in Different Horizons of a Podzol. Soil Sci. Soc. Am. J., v.63, p.1106-1115. https://doi.org/10.2136/sssaj1999.6351106x

Cited by

  1. Aluminum fractionation and speciation in a coal mine dump: Twenty years of time-course evolution vol.273, 2016, https://doi.org/10.1016/j.geoderma.2016.03.013