DOI QR코드

DOI QR Code

Biogeochemical Remediation of Cr(VI)-Contaminated Groundwater using MMPH-0 (Enterobacter aerogenes)

MMPH-0 (Enterobacter aerogenes)에 의한 6가 크롬 오염 지하수의 생지화학적 정화

  • Seo, Hyun-Hee (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University) ;
  • Kim, Kang-Joo (Department of Environmental Engineering, Kunsan National University) ;
  • Park, Eun-Gyu (Department of Geology, Kyungpook National University) ;
  • Kim, Yeong-Kyoo (Department of Geology, Kyungpook National University) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Moon, Ji-Won (Biosciences Division, Oak Ridge National Laboratory) ;
  • Roh, Yul (Department of Earth and Environmental Sciences, Chonnam National University)
  • 서현희 (전남대학교 자연과학대학 지구환경과학부) ;
  • 이성근 (충북대학교 자연과학대학 미생물학과) ;
  • 김강주 (군산대학교 공과대학 환경공학과) ;
  • 박은규 (경북대학교 자연과학대학 지질학과) ;
  • 김영규 (경북대학교 자연과학대학 지질학과) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부) ;
  • 문지원 (오크릿지 미국립연구소 미생물 생리학 및 병리학 그룹) ;
  • 노열 (전남대학교 자연과학대학 지구환경과학부)
  • Received : 2012.03.26
  • Accepted : 2012.04.24
  • Published : 2012.04.28

Abstract

Indigenous bacteria isolated from contaminated sites play important roles to remediate contaminated groundwater. Chromium has the most stable oxidation states. Cr(VI) is toxic, carcinogenic, and mobile, but Cr(III) is less toxic and immobile. In this study, indigenous microorganism (MMPH-0) was enriched from Cr(VI) contaminated groundwater, and identified by 16S rRNA gene analysis. Using MMPH-0, the effect of stimulating with e-donors (glucose, lactate, acetate, and no e-donor control), respiration conditions, biomass, tolerance, and geochemical changes on Cr(VI) reduction were investigated in batch experiments for 4 weeks. The changes of Cr(VI) concentration and geochemical conditions were monitored using UV-vis-spectrophotometer and Eh-pH meter. And the morphological and chemical characteristics of MMPH-0 and precipitates in the effluents were characterized by TEM-EDS and SEM-EDS analyses. MMPH-0 (Enterobacter aerogenes) was able to tolerate up to 2000 mg/L Cr(VI) and reduce Cr(VI) under aerobic and anaerobic conditions. MMPH-0 performed faster and higher efficiency of Cr(VI) reduction with electron donors (over 70% after 1 week with e-donor, 10-20% after 4 weeks without e-donor). The changes of Eh-pH in effluents showing the tendency from oxidizing to reducing condition and a bit of acidic change in pH due to microbial oxidation of organic matters donating electrons and protons suggested the roles of MMPH-0 on Cr(VI) in the contaminated water catalyzing to transit geochemical stable zone for more stable $Cr(OH)_3$ or Cr(III) precipitates. TEM/SEM-EDS analyses of MMPH-0 and precipitates indicate direct and indirect Cr(VI) reduction: extracellular polymers capturing Cr component outside cells. These results suggested diverse indigenous bacteria and their biogeochemical reactions might enhance more effective and feasible remediation technology of redox sensitive heavy metals in metal-contaminated in groundwater.

오염환경에 서식하는 토착미생물은 환경정화에 중요한 역할을 담당하며 이 연구는 6가 크롬 오염 지하수에서 분리한 미생물을 이용해 반응성, 이동성, 발암성 높은 6가 크롬을 당대사 조효소인 3가 크롬으로 환원/침전시켜 경제적, 친환경적, 생지화학적 정화의 효율성을 알아보았다. 미생물 농화배양과 조성분석, 호기와 혐기환경의 6가 크롬 환원과 내성, 전자공여체별 6가 크롬 환원, 지화학적 변화, 미생물 외형과 Cr((III) 침전물의 광물특성을 연구한 결과, 분리한 MMPH-0(Enterobacter aerogenes)는 혐기/호기환경에서 6가 크롬 내성과 환원능(유기산 주입 1주 후 70%, 주입 안한 경우 4주 후 10 ~ 20%)이 있고, Eh는 미생물의 유기산 산화로 생성된 전자에 의해 산화에서 환원환경, pH는 중성에서 약산성으로 변화되어 $Cr(OH)_3$/Cr(III)침전물이 형성되었다. SEM/TEM-EDS 결과 $2{\sim}5{\mu}m$ 막대형 미생물과 세포 밖 Cr(III) 침전물은 지화학적 환경변화와 유기산 산화에 따른 전자공여에 의한 환원의 근거가 된다. 지화학적 촉매제 토착미생물의 활성화로 산화환원에 민감한 중금속 오염 지하수 정화에 효율적 기술 응용이 기대된다.

Keywords

References

  1. Ackerley, D.F., Gonzalez, C.F., Keyhan, M., Blake, R. and Martin, A. (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction, Environmental Microbiology, v.6(8), p.851-860. https://doi.org/10.1111/j.1462-2920.2004.00639.x
  2. Appukuttan, D., Rao, A.S. and Apte, S.K. (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste, Applied and Environmental Microbiology, v.72(12), p.7873-7878. https://doi.org/10.1128/AEM.01362-06
  3. Bartlett, R.J. (1991) Chromium cycling in soils and water: links, gaps, and methods, Environmental Health Perspectives, v.92, p.17-24. https://doi.org/10.1289/ehp.919217
  4. Berkeley Lab. (2003) Bioremediation of metals and radionuclides, 2nd edition. p.9-15.
  5. Cheung, K.H. and Gu, J.D. (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments, World Journal of Microbiology & Biotechnology, v.21, p.213-219. https://doi.org/10.1007/s11274-004-3619-9
  6. Cheung, K.H. and Gu, J.D. (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review, International Biodeterioration & Biodegradation, v.59, p.8-15. https://doi.org/10.1016/j.ibiod.2006.05.002
  7. Chon, C.-M., Ahn, J.S., Roh, Y., Rhee, S.-K., Seo, H., Kim, G.-Y., Koh, D.-C., Son, Y. -C. and Kim, J.-W. (2006) Seasonal variation of Cr(VI)-contaminated groundwater quality and the potential for natural attenuation. Econ. Environ. Geol., v.41(6), p.645-655.
  8. Chon, C.-M., Moon, S.H., Ahn, J.S., Kim, Y., Won, J.-H. and Ahn, K.-H. (2007) Fate and transport of Cr(VI) contaminated groundwater from the industrial area in Daejeon. Econ. Environ. Geol., v.40(4), p.403-417.
  9. Cummings, D.E., Fendorf, S., Singh, N., Sani, R.K., Peyton, B.M. and Magnuson, T.S. (2007) Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum, Environmental Science Technology, v.41, p.146-152. https://doi.org/10.1021/es061333k
  10. Daulton, T.L., Little, B.J., Jones-Meehan, J., Blom, D.A. and Allard, L.F. (2007) Microbial reduction of chromium from the hexavalent to divalent state, Geochimica et Cosmochimica Acta, v.71, p.556-565. https://doi.org/10.1016/j.gca.2006.10.007
  11. Ellis, A.S., Johnson, T.M. and Bullen, T.D. (2002) Chromium isotopes and the fate of hexavalent chromium, Science v.295(5562), p.2060-2062. https://doi.org/10.1126/science.1068368
  12. Francis, C.A., Obraztsova, A.Y. and Tebo, B.M. (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1, Applied and Environmental Microbiology, v.66(2), p.543-548. https://doi.org/10.1128/AEM.66.2.543-548.2000
  13. Goulhen, F., Gloter, A., Guyot, F. and Bruschi, M. (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies, Applied Microbiology and Biotechnology, v.71, p.892- 897. https://doi.org/10.1007/s00253-005-0211-7
  14. Guertin, J., Jacobs, J.A. and Avakian, C.P. (2005) Chromium( VI) Handbook. CRC Press. Florida. p.2-19.
  15. Horton, R.N., Apel, W.A., Thompson, V.S. and Sheridan, P.P. (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacte aurescens, BMC Microbiology, v.6(5), doi:10.1186/1471-2180-6-5
  16. Hussein, H., Ibrahim, S.F., Kandeel, K. and Moawad, H. (2004) Biosorption of heavy metals from waste water using Pseudomanas sp., Electronic Journal of Biotechnology, v.7(1), p.30-37.
  17. Iyer, A., Mody, K. and Jha, B. (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae, Marine Pollution Bulletin, v.49, p.974-977. https://doi.org/10.1016/j.marpolbul.2004.06.023
  18. Kim, P.G. (2004) Geotechnical characteristics of regional area in Korea: Deajeon-Chungnam area. Seminar and Meeting Report of Korean Geotechnical Scoiety, p.158-164.
  19. Lee, J.-U., Chon, H.-T. and John, Y.W. (1997) Geochemical characteristics of groundwater with different geology an temperature-Comparative study with granitic groundwater, Journal of the Korean Society of Groundwater Environment, v.4(4), p.212-222.
  20. Lee, S.-E., Lee, J.-U., Lee, J.-S. and Chon, H.-T. (2005) Cr (VI) reduction by indigenous bacteria in anaerobic sediment, J. of Mineral and Energy Resources, v.42(6), p.618-624.
  21. Llovera, S., Bonet, R., Simon-Pujol, M.D. and Congregado, F. (1993) Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916, Applied and Environmental Microbiology, v.59(11), p.3516-3518.
  22. Lovley, D.R., Widman, P.K., Woodward, J.C. and Phillips, E.J.P. (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris, Applied and Environmental Microbiology, v.59(11), p.3572-3576.
  23. Lowe, K.L., Straube, W.B. and Jones-Meehan, J. (2003) Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis effects of cationic metals, sorbing agents and mixed microbial culture, Acta Biotechnology, v.23(2-3), p.161-178. https://doi.org/10.1002/abio.200390024
  24. Madigan, M.T. and Martinko, J.M. (2006) Brock Biology of Microorganisms 11th, Prentice Hall. Pearson Education Korea LTD, and World Science, Seoul, Korea, p.108-126.
  25. McLean, J. and Beveridge, T.J. (2000) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate, Applied and Environmental Microbiology, v.67(3), p.1076-1084.
  26. Ministry of Land and Transport Affairs, K-Water, Korea Institute of Geoscience and Mineral Resources, 2006, 2006 research report on area of contaminated groundwater and countmeasure plan, p.249-310.
  27. Moon, H.J. (2007) Policies for the Rational Utilization and Management of Groundwater Resources. Korea Environment Institute, p.5-17.
  28. Ohtake, H., Wang, P.C., Mori, T., Komori, K., Sasatsu, M. and Toda, K. (1989) Isolation and chracterization of an Enterobacter cloacae strain that ruduces hexavalent chromium under anaerobic conditions, Applied and Environmental Microbiology, v.55, p.1665-1669.
  29. Palmer, C.D. and Puls, R.W. (1994) EPA Ground Water Issue EPA/540/5-94/505
  30. Palmer, C.D. and Wittbrodt, P.R. (1991) Processes affecting the remediation of chromium-contaminated sites, Environmental Health Perspectives, v.92, p.25-40. https://doi.org/10.1289/ehp.919225
  31. Pinon-Castillo, H.A., Brito, E.M.S., Goni-Urriza, M., Guyoneaud, R., Duran, R., Nevarez-Moorillon, G.V., Gutierrez-Corona, J.F., Carretta, C.A. and Reyna- Lopez, G.E. (2010) Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent, J. of Applied Microbiology, v.109, p.2173-2182. https://doi.org/10.1111/j.1365-2672.2010.04849.x
  32. Puzon, G.J., Roberts, A.G., Kramer, D.M. and Xun, L. (2005) Formation of soluble organo-Chromium(III) complexes after chromate reduction in the presence of cellular organics, Environmental Science & Technology, v.39, p.2811-2817. https://doi.org/10.1021/es048967g
  33. Puzon, G.J., Huang, Y., Dohnalkova, A. and Xun, L. (2008) Isolation and characterization of an $NAD^+$- degrading bacterium PTX1 and its role in chromium biogeochemical cycle, Biodegradation, v.19, p.417-424. https://doi.org/10.1007/s10532-007-9147-1
  34. Rai, D., Sass, B.M. and Moore, D.A. (1987) Chromium( III) hydrolysis constants and solubility of chromium( III) hydroxide, Inorganic Chemistry, v.26, p.345-349. https://doi.org/10.1021/ic00250a002
  35. Remoundaki, E., Hatzikioseyian, A. and Tsezos, M. (2007) A systematic study of chromium solubility in the presence of organic matter: consequences for the treatment of chromium-containing wastewater, J. of Chemical Technology and Biotechnology, v.82, p.802-808. https://doi.org/10.1002/jctb.1742
  36. Rhee, S.-K. (2007) Analyses of microbial diversity of contaminated groundwater of Moonpyung, Daejeon based on microbial ecology. Consulting report
  37. Seo, J.K. and Kim, M.K. (2006) The characteristics of groundwater quality with different aquifer geology in the Samnam Area, Ogcheon, J. of Mineral and Energy Resources, v.43(4), p.359-368.
  38. Sharma, K. (2002) Microbial Cr(VI) reduction: Role of Electron Donors, Acceptors, and Mechanisms, with Special Emphasis on Clostridium spp., Ph D. thesis, University of Florida, USA, 36p.
  39. Shen, H. and Wang, Y.T. (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456, Applied and Environmental Microbiology, v.59(11), p.3771-3777.
  40. Smith, W.L. and Gadd, G.M. (2000) Reduction and precipitation of chromate by mixed culture sulphatereducing bacterial biofilms, J. of Applied Microbiology, v.88, p.983-991. https://doi.org/10.1046/j.1365-2672.2000.01066.x
  41. Swayambunathan, V., Liao, Y.X. and Meisel, D. (1989) Stages in the evolution of colloidal chromium(III) oxide, Langmuir, v.5, p.1423-1427. https://doi.org/10.1021/la00090a030
  42. Tsezos, M., Hatzikioseyian, A. and Remoundaki, E. (2007) A systematic study of chromium solubility in the presence of organic matter: consequences for the treatment of chromium-containing wastewater, J. of Chemical Technology and Biotechnology, v.82, p.802-808. https://doi.org/10.1002/jctb.1742
  43. Turick, C.E. and Apel, W.W. (1997) Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or ground water, US Patent Issued
  44. Wang, Y.-T. and Xiao, C. (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria, Water Research, v.29, p.2467-2474. https://doi.org/10.1016/0043-1354(95)00093-Z
  45. Zhu, W., Yang, Z., Ma, Z. and Chai, L. (2008) Reduction of high concentration of chromate by Leucobacter sp. CRB1 isolated from Changsha, China, World Journal of Microbiology and Biotechnology, v.24, p.991-996. https://doi.org/10.1007/s11274-007-9564-7

Cited by

  1. Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria vol.47, pp.1, 2014, https://doi.org/10.9719/EEG.2014.47.1.61