DOI QR코드

DOI QR Code

Control Efficacy of Controlled Atmosphere and Temperature Treatment System Against the Hawthorn Spider Mite, Tetranychus viennensis

환경조절열처리 기술을 이용한 벚나무응애(Tetranychus viennensis) 살비 효과

  • Son, Ye-Rim (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Jong-Ho (Animal, Plant and Fisheries Quarantine and Inspection Agency, National Plant Quarantine Service) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 손예림 (안동대학교 생명자원과학과) ;
  • 이종호 (농림수산검역검사본부 식물검역부) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2012.01.26
  • Accepted : 2012.04.19
  • Published : 2012.06.01

Abstract

The hawthorn spider mite, Tetranychus viennensis, is a pest of apples and a quarantine pest from some countries that import apples from Korea. A controlled atmosphere and temperature treatment system (CATTS) was developed as an alternative disinfestation method to methyl bromide fumigation treatment, and has been applied to control various insects and other arthropod pests on fruits. We applied CATTS to disinfect T. viennensis under conditions that were previously developed to control the peach fruit moth, Carposina sasakii. First, T. viennensis was sampled from Japanese apricot, Prunus mume, and identified by its morphological characters. In addition, both cytochrome oxidase I (COI) and internal transcribed spacer (ITS) sequences supported the morphological identification. Second, the heat-tolerant developmental stage was determined in T. viennensis. When a $46^{\circ}C$ heat treatment was applied to egg, nymph, and adult stages of T. viennensis, adults were the most tolerant stage. Third, when heat temperature was used along with 1% $O_2$ and 15% $CO_2$, the mites showed a significant increase in susceptibility to the heat treatment. Finally, CATTS at $46^{\circ}C$ with 15% $CO_2$ and 1% $O_2$ for 30 min resulted in 100% mortality of all T. viennensis development stages. These results indicated that CATTS isapplicable to disinfest T. viennensis in post-harvest apples.

벚나무응애(Tetranychus viennensis)는 사과 해충으로 수출시 일부 국가에서 주요 검역 대상 해충으로 알려져 있다. 환경조절열처리(controlled atmosphere temperature treatment system: CATTS)는 메틸브로마이드 훈증 처리의 대체 기술로서 과실류를 가해하는 다양한 곤충 및 기타 절지동물 해충류를 소독하는 기술로서 개발되었다. 본 연구는 복숭아심식나방(Carposina sasakii)을 방제하기 위해 개발된 CATTS 조건을 벚나무응애에 적용하였다. 먼저, 매실나무에서 벚나무응애를 채집하였고, 이를 형태적 특징으로 동정하였다. Cytochrome oxidase I (COI)과 internal transcribed spacer (ITS) 영역들의 염기서열은 형태적 동정 결과를 뒷받침하였다. 둘째로, 벚나무응애의 열처리에 대해 가장 높은 내성을 보이는 발육시기를 결정했다. 알, 약충과 성충을 $46^{\circ}C$에서 열처리를 하였을 때 성충에서 가장 높은 내성을 보였다. 셋째, 고온과 변경된 공기조건(1% 산소와 15%의 이산화탄소)을 결합하여 처리하였을 때 응애의 고온에 대한 감수성이 현격하게 증가하였다. 끝으로 CATTS 조건인 $46^{\circ}C$에서 15%의 이산화탄소 농도와 1%의 산소 농도에서 30분 처리는 벚나무응애의 모든 발육태에서 100%의 살비 효과를 나타냈다. 이러한 결과는 수확된 사과에 존재하는 벚나무응애를 사멸하는 데 CATTS 소독 처리 기술을 적용할 수 있다는 것을 제시하였다.

Keywords

References

  1. Bolland, H.R., J. Gutierrez and C.H.W. Flechtmann. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Koninklijke Brill NV, Leiden, The Netherlands.
  2. Butz, P. and B. Tauscher. 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19: 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
  3. Carpenter, A. and M. Potter. 1994. Controlled atmospheres. pp. 171-198, In Quarantine treatments for pests and food plants, eds. by J.L. Sharp and G.J. Hallman. 290pp. Westview, Boulder, CO, USA.
  4. Choi, K.H., Y.J. Kwon, S.W. Lee and O.H. Ryu. 1997. The ecology Tetranychus viennensis Zacher and its chemical control effects. Kor. J. Appl. Entomol. 36: 111-117.
  5. Ehara, S. 1999. Revision of the spider mite family Tetranychidae of Japan (Acari, Prostigmata). Species Diversity 4: 63-141.
  6. Ehara, S. and T. Gotoh. 1990. A new Tetranychus closely related to T. viennensis Zacher (Acari: Tetranychidae). Intl. J. Acarol. 16: 55-58. https://doi.org/10.1080/01647959008683512
  7. FAO (Food and Agriculture Organization of the United Nations). 1983. International plant quarantine treatment manual. Plant production and protection paper 50. FAO, Rome.
  8. Gotoh, T. 1984. Annual life cycle of the hawthorn spider mite, Tetranychus viennensis Zacher. Jpn. J. Appl. Entomol. Zool. 28: 254-259. https://doi.org/10.1303/jjaez.28.254
  9. Gotoh, T. 1986. Life-history parameters of the hawthorn spider mite, Tetranychus viennensis Zacher (Acarina: Tetranychidae), on deciduous oak. Appl. Entomol. Zool. 21: 389-393. https://doi.org/10.1303/aez.21.389
  10. Heinrich, B. 1981. Ecological and evolutionary perspectives. pp. 236-302. In Insect thermoregulation, ed. by B. Heinrich. Wiley, New York.
  11. Hillis, D.M. and M.T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411-429. https://doi.org/10.1086/417338
  12. Hollingsworth, R.G. and J.W. Armstrong. 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98: 289-298. https://doi.org/10.1603/0022-0493-98.2.289
  13. Ikediala, J.N., J. Tang, L.G. Neven and S.R. Drake. 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16: 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  14. Jo, K.D., S.B. Yim, S.K. Lee, S.H. Choi, T.H. Kim, K.H. Han and K.I. Song. 2003. Two cases of methyl bromide intoxication with seizures and altered mental state. J. Kor. Epilepsy Soc. 7: 125-129.
  15. Kasap, I. 2003. Life history of hawthorn spider mite Amphitetranychus viennensis (Acarina: Tetranychidae) on various apple cultivars and at different temperatures. Exp. Appl. Acarol. 31: 79-91. https://doi.org/10.1023/B:APPA.0000005141.45970.f7
  16. Kells, S.A., L.J. Mason, D.E. Maier and C.P. Woloshuck. 2001. Efficacy and fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37: 371-383. https://doi.org/10.1016/S0022-474X(00)00040-0
  17. Lee, H.S. and B.K. Chung. 2011. Occurrences of major pests in Japanese apricot, Prunus mume Siebold & Zucc. in Gyeongnam province. Kor. J. Appl. Entomol. 50: 21-27. https://doi.org/10.5656/KSAE.2011.01.1.088
  18. Lee, M.L. and M.H. Lee. 1997. Amplified mitochondrial DNA identify four species on Tetranychus mites (Acarina: Tetranychidae) in Korea. Kor. J. Appl. Entomol. 36: 30-36.
  19. Lee, M.L., S.J. Suh and Y.J. Kwon. 1999. Phylogeny and diagnostic markers of six Tetranychus species (Acarina: Tetranychidae) in Korea based on the mitochondrial cytochrome oxidase subunit I. J. Asia Pac. Entomol. 2: 85-92. https://doi.org/10.1016/S1226-8615(08)60035-7
  20. Liu, Y.B. 2003. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality. J. Econ. Entomol. 96: 1100-1107. https://doi.org/10.1603/0022-0493-96.4.1100
  21. Mainali, B.P., S. Shrestha, U.T. Lim and Y. Kim. 2008. Molecular markers of two sympatric species of the genus Frankliniella (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 11: 45-48. https://doi.org/10.1016/j.aspen.2008.03.001
  22. Navajas, M. and B. Fenton. 2000. The application of molecular markers in the study of diversity in acarology: a review. Exp. Appl. Acarol. 24: 751-774. https://doi.org/10.1023/A:1006497906793
  23. Navajas, M., D. Fournier, J. Lagnel, J. Gutlerrez, and P. Boursot. 1996. Mitochondrial COI sequences in mites: evidence for variations in base composition. Insect Mol. Biol. 5: 281-285. https://doi.org/10.1111/j.1365-2583.1996.tb00102.x
  24. Navajas, M., J. Gutierrez, O. Bonato, H.R. Bolland and S. Mapangou-Divassa. 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Exp. Appl. Acarol. 18: 351-360. https://doi.org/10.1007/BF00116316
  25. Nelson, S.O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39: 1475-1484. https://doi.org/10.13031/2013.27641
  26. Neven, L.G. 1998. Effects of heating rate on the mortality of fifth-instar codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 91, 297-301. https://doi.org/10.1093/jee/91.1.297
  27. Neven, L.G. 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21: 103-111. https://doi.org/10.1016/S0925-5214(00)00169-1
  28. Neven, L.G. 2005. Combined heat and controlled atmosphere quarantine treatments for control of codling moth, Cydia pomonella, in sweet cherries. J. Econ. Entomol. 98: 709-715. https://doi.org/10.1603/0022-0493-98.3.709
  29. Neven, L.G. and S.R. Drake. 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20: 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
  30. Neven, L.G. and E.J. Mitcham. 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42: 56-59. https://doi.org/10.1093/ae/42.1.56
  31. Neven, L.G. and L. Rehfield-Ray. 2006a. Combined heat and controlled atmosphere quarantine treatments for control of western cherry fruit fly in sweet cherries. J. Econ. Entomol. 99: 658-663. https://doi.org/10.1603/0022-0493-99.3.658
  32. Neven, L.G. and L. Rehfield-Ray. 2006b. Confirmation and efficacy test against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1620-1627. https://doi.org/10.1603/0022-0493-99.5.1620
  33. Neven, L.G., L. Rehfield-Ray and D. Obenland. 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in peaches and nectarines using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1610-1619. https://doi.org/10.1603/0022-0493-99.5.1610
  34. Obenland, D., P. Neipp, B. Mackey and L.G. Neven. 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40: 1425-1430.
  35. Pardue, M.L. 1988. The heat shock response in biology and human disease: a meeting review. Genes Dev. 2: 783-785. https://doi.org/10.1101/gad.2.7.783
  36. Park, M., B. Sung and J. Cho. 2011. Residual characteristics of methyl bromide and hydrogen cyanide in banana, orange, and pineapple. J. Appl. Biol. Chem. 54: 214-217. https://doi.org/10.3839/jabc.2011.035
  37. Paull, R.E. and J.W. Armstrong. 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
  38. Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22: 117-121.
  39. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  40. Sharp, J.L. and G.J. Hallman. 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO, USA.
  41. Shim, J.K., D.O. Jung, J.W. Park, D.W. Kim, D.M. Ha and K.Y. Lee. 2006. Molecular cloning of the heat-shock cognate 70 (Hsp70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp. Biochem. Physiol. B 145: 288-295. https://doi.org/10.1016/j.cbpb.2006.07.009
  42. Son, Y., K. Choi, Y. Kim and Y. Kim. 2010a. Applicability of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49: 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037
  43. Son, Y., Y. Kim and Y. Kim. 2010b. Control effect of a stored grain insect pest, Tribolium castaneum, by 'CATTS' postharvest treatment. Kor. J. Appl. Entomol. 49: 363-369. https://doi.org/10.5656/KSAE.2010.49.4.363
  44. Tang, J., J.N. Ikediala, S. Wang, J.D. Hansen and R.P. Cavalieri. 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21: 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
  45. UNEP (United Nations Environmental Programme). 1992. Methyl bromide: atmospheric science, technology and economics. UNEP, U.N. Headquarters, Nairobi, Kenya.
  46. USDA. 1982. Insects not known to occur in the United States. A fruit-tree spider mite (Tetranychus viennensis Zacher), pp. 40-41. In Pest identification notebook, Vol. 1. USDA/ARS, Frederick, MD.
  47. Vrain, T.C., D.A. Wakarchuk, A.C. Levesque and R.I. Hamilton. 1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund. Appl. Nematol. 15: 563-574.
  48. Wang, S., J. Tang, J.A. Johnson, E. Micham and J.D. Hansen. 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26: 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0
  49. Yahia, E.M. 2000. The mortality of artificially infested third instar larvae of Anastrepha ludens and A. obliqua in mango fruit with insecticidal controlled atmospheres at high temperatures. Acta Hort. 509: 833-839.
  50. Yocum, G.D. and D.L. Denlinger. 1992. Prolonged thermotolerance in the flesh fly, Sarcophaga crassipalpis, does not require continuous expression or persistence of the 72 kDa heat-shock protein. J. Insect Physiol. 38: 603-609. https://doi.org/10.1016/0022-1910(92)90112-Q

Cited by

  1. A Postharvest Control Technique of the Oriental Fruit Moth, Grapholita molesta, Infesting Apples Using CATTS vol.53, pp.1, 2014, https://doi.org/10.5656/KSAE.2014.01.1.069
  2. Post-harvest Treatment on the Peach Pyralid Moth and the Small Tea Tortrix Moth Infesting Apples Using Controlled Atmosphere and Temperature Treatment System vol.54, pp.1, 2015, https://doi.org/10.5656/KSAE.2015.01.1.066