DOI QR코드

DOI QR Code

Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study

  • Kolaski, Maciej (Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia) ;
  • Cho, Seung-Joo (Departments of Bio-New Drug Development, College of Medicine, Chosun University)
  • Received : 2011.09.16
  • Accepted : 2012.03.22
  • Published : 2012.06.20

Abstract

We carried out DFT calculations for monohydrated sulfuric and phosphoric acids. We are interested in clusters which differ in orientation of hydrogen atoms only. Such molecular complexes are close in energy, since they lie in the vicinity of the global minimum energy structure on the flat potential energy surface. For monohydrated sulfuric acid we identified four different isomers. The monohydrated phosphoric acid forms five different conformers. These systems are difficult to study from the theoretical point of view, since binding energy differences in several cases are very small. For each structure, we calculated harmonic vibrational frequencies to be sure that if the optimized structures are at the local or global minima on the potential energy surface. The analysis of calculated -OH vibrational frequencies is useful in interpretation of infrared photodissociation spectroscopy experiments. We employed four different DFT functionals in our calculations. For each structure, we calculated binding energies, thermodynamic properties, and harmonic vibrational frequencies. Our analysis clearly shows that DFT approach is suitable for studying monohydrated inorganic acids with different hydrogen atom orientations. We carried out MP2 calculations with aug-cc-pVDZ basis set for both monohydrated acids. MP2 results serve as a benchmark for DFT calculations.

Keywords

References

  1. Leopold, K. R. Ann. Rev. Phys. Chem. 2011, 62, 327. https://doi.org/10.1146/annurev-physchem-032210-103409
  2. Fiacco, D. L.; Hunt, S. W.; Leopold, K. R. J. Am. Chem. Soc. 2002, 124, 4504. https://doi.org/10.1021/ja012724w
  3. Stace, A. Science 2001, 294, 1292. https://doi.org/10.1126/science.1066731
  4. Singh, N. J.; Park, M.; Min, S. K.; Suh, S. B.; Kim, K. S. Angew. Chem. Int. Ed. 2006, 45, 3795. https://doi.org/10.1002/anie.200504159
  5. Lee, H. M.; Tarakeshwar, P.; Park, J. W.; Ko aski, M. R.; Yoon, Y. J.; Yi, H.-B.; Kim, W. Y.; Kim, K. S. J. Phys. Chem. A 2004, 108, 2949. https://doi.org/10.1021/jp0369241
  6. Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2006, 124, 184301. https://doi.org/10.1063/1.2191047
  7. Hurley, S. M.; Dermota, T. E.; Hydutsky, D. P.; Castleman, A. W. Science 2002, 298, 202. https://doi.org/10.1126/science.1075307
  8. Ko aski, M.; Lee, H. M.; Pak, C.; Kim, K. S. J. Am. Chem. Soc. 2008, 130, 103. https://doi.org/10.1021/ja072427c
  9. Weber, J. M.; Kelley, J. A.; Nielsen, S. B.; Ayotte, P.; Johnson, M. A. Science 2000, 287, 2461. https://doi.org/10.1126/science.287.5462.2461
  10. Majumdar, D.; Kim, J.; Kim, K. S. J. Chem. Phys. 2000, 112, 101. https://doi.org/10.1063/1.480565
  11. Gutberlet, A.; Schwaab, G.; Birer, O.; Masia, M.; Kaczmarek, A.; Forbert, H.; Havenith, M.; Marx, D. Science 2009, 324, 1545. https://doi.org/10.1126/science.1171753
  12. Odde, S.; Mhin, B. J.; Lee, K. H.; Lee, H. M.; Tarakeshwar, P.; Kim, K. S. J. Phys. Chem. A 2006, 110, 7918. https://doi.org/10.1021/jp060149i
  13. Re, S.; Osamura, Y.; Suzuki, Y.; Schaefer, H. F., III. J. Chem. Phys. 1998, 109, 973. https://doi.org/10.1063/1.476640
  14. Kumar, A.; Park, M.; Huh, J. Y.; Lee, H. M.; Kim, K. S. J. Phys. Chem. A 2006, 110, 12484. https://doi.org/10.1021/jp063726b
  15. Lee, H. M.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2004, 121, 4657. https://doi.org/10.1063/1.1779566
  16. Lee, H. M.; Kim, D.; Singh, N. J.; Ko aski, M.; Kim, K. S. J. Chem. Phys. 2007, 127, 164311. https://doi.org/10.1063/1.2778423
  17. Singh, N. J.; Yi, H.-B.; Min, S. K.; Park, M.; Kim, K. S. J. Phys. Chem. B 2006, 110, 3815.
  18. Olleta, A. C.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2007, 126, 144311. https://doi.org/10.1063/1.2715565
  19. Olleta, A. C.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2006, 124, 024321. https://doi.org/10.1063/1.2147283
  20. Godinho, S. S. M. C.; do Couto, P. C.; Cabral, B. J. C. J. Chem. Phys. 2005, 122, 044316. https://doi.org/10.1063/1.1826032
  21. Odde, S.; Mhin, B. J.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 11083. https://doi.org/10.1063/1.1812740
  22. Loerting, T.; Liedl, K. R. Proc. Nat. Acad. Sci. USA 2000, 97, 8874. https://doi.org/10.1073/pnas.97.16.8874
  23. Fiacco, D. L.; Hunt, S. W.; Leopold, K. R. J. Am. Chem. Soc. 2002, 124, 4504. https://doi.org/10.1021/ja012724w
  24. Larson, L. J.; Kuno, M.; Tao, F.-M. J. Chem. Phys. 2000, 112, 8830. https://doi.org/10.1063/1.481532
  25. Arstila, H.; Laasonen, K.; Laaksonen, A. J. Chem. Phys. 1998, 108, 1031. https://doi.org/10.1063/1.475496
  26. Aguzzi, A.; Rossi, M. J. Phys. Chem. Chem. Phys. 2001, 3, 3707. https://doi.org/10.1039/b100546o
  27. Alexeev, Y.; Windus, T. L.; Zhan, C. G.; Dixon, D. A. Int. J. Quant. Chem. 2005, 104, 379. https://doi.org/10.1002/qua.20698
  28. Corbridge, D. E. C. Phosphorus: An Outline of its Chemistry, Biochemistry, and Technology; Elsevier: Amsterdam, The Netherlands, 1995.
  29. Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic Press: San Diego, USA, 2001.
  30. Ruiz-Morales, Y.; Ziegler, T. J. Phys. Chem. A 1998, 102, 3970. https://doi.org/10.1021/jp973308u
  31. Helgaker, T.; Jaszu ski, M.; Ruud, K. Chem. Rev. 1999, 99, 293. https://doi.org/10.1021/cr960017t
  32. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  33. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. https://doi.org/10.1039/b810189b
  34. Grimme, S. J. Comp. Chem. 2006, 27, 1787. https://doi.org/10.1002/jcc.20495
  35. Grimme, S. J. Chem. Phys. 2006, 124, 034108. https://doi.org/10.1063/1.2148954
  36. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  37. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  38. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. https://doi.org/10.1139/p80-159
  39. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1, Gaussian, Inc.: Wallingford CT, 2009.
  41. Feller, D. J. Comp. Chem. 1996, 17(13), 1571. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
  42. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061. https://doi.org/10.5012/bkcs.2004.25.7.1061
  43. Min, S. K.; Lee, E. C.; Lee, H. M.; Kim, D. Y.; Kim, D.; Kim, K. S. J. Comput. Chem. 2008, 29, 1208. https://doi.org/10.1002/jcc.20880

Cited by

  1. Influence of solvent environment using the CPCM model on the H-bond geometry in the complexes of phosphorus acids with DMSO vol.27, pp.4, 2016, https://doi.org/10.1007/s11224-016-0744-7