DOI QR코드

DOI QR Code

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun (Department of Materials Science and Engineering, Inha University) ;
  • Park, Sung-Hoon (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Hyun-Su (Department of Materials Science and Engineering, Inha University) ;
  • An, So-Yeon (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chong-Mu (Department of Materials Science and Engineering, Inha University)
  • Received : 2011.12.02
  • Accepted : 2012.03.19
  • Published : 2012.06.20

Abstract

Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.

Keywords

References

  1. Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Adv. Mater. 2003, 15, 997. https://doi.org/10.1002/adma.200304889
  2. Liu, Y.; Koep, E.; Liu, M. Chem. Mater. 2005, 17, 3997. https://doi.org/10.1021/cm050451o
  3. Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. Angew. Chem. 2002, 114, 2511. https://doi.org/10.1002/1521-3757(20020703)114:13<2511::AID-ANGE2511>3.0.CO;2-N
  4. Lin, Y. H.; Huang, M. W.; Liu, C. K.; Chen, J. R.; Wu, J. M. J. Electrochem. Soc. 2009, 156, K196. https://doi.org/10.1149/1.3223984
  5. Ramgir, N. S.; Mulla, I. S.; Vijayamohanan, K. P. Sens. Actuators B 2005, 107, 708. https://doi.org/10.1016/j.snb.2004.12.073
  6. Wan, Q.; Wang, T. H. Chem. Commun. 2005, 3841.
  7. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Nano Lett. 2005, 5, 667. https://doi.org/10.1021/nl050082v
  8. Kuang, Q.; Lao, C. S.; Li, Z.; Liu, Y. Z.; Xie, Z. X.; Zheng, L. S.; Wang, Z. L. J. Phys. Chem. C 2008, 112, 11539. https://doi.org/10.1021/jp802880c
  9. Wright, J. S.; Lim, W.; Gila, B. P.; Pearton, S. J.; Johnson, J. L.; Ural, A.; Ren, F. Sens. Actuators B 2009, 140, 196. https://doi.org/10.1016/j.snb.2009.04.009
  10. Xue, X.; Xing, L.; Chen, Y.; Shi, S.; Wang, Y.; Wang, T. J. Phys. Chem. C 2008, 112, 12157.
  11. Chen, Y. J.; Zhu, C. L.; Wang, L. J.; Cao, P.; Cao, M. S.; Shi, X. L. Nanotechnology 2009, 20, 045502. https://doi.org/10.1088/0957-4484/20/4/045502
  12. Park, J. Y.; Choi, S. W.; Lee, J. W.; Lee, C.; Kim, S. S. J. Am. Ceram. Soc. 2009, 92, 2551. https://doi.org/10.1111/j.1551-2916.2009.03270.x
  13. Ito, K.; Ohgami, T. Appl. Phys. Lett. 1992, 60, 938. https://doi.org/10.1063/1.106467
  14. Sekimoto, S.; Nakagawa, H.; Okazaki, S.; Fukuda, K.; Asakura, S.; Shigemori, T.; Takahashi, S. Sens. Actuators B 2000, 66, 142. https://doi.org/10.1016/S0925-4005(00)00330-0
  15. Okazaki, S.; Nakagawa, H.; Asakura, S.; Tomiuchi, Y.; Tsuji, N.; Murayam, H.; Washiya, M. Sens. Actuators B 2003, 93, 142. https://doi.org/10.1016/S0925-4005(03)00211-9
  16. Matsuyama, N.; Okazaki, S.; Nakagawa, H.; Sone, H.; Fukuda, K. Thin Solid Film 2009, 517, 4650. https://doi.org/10.1016/j.tsf.2009.01.126
  17. Sumida, S.; Okazaki, S.; Asakura, S.; Nakagawa, S.; Murayama, H.; Hasegawa, T. Sens. Actuators B 2005, 108, 508. https://doi.org/10.1016/j.snb.2004.11.068
  18. Nakagawa, H.; Yamamoto, N.; Okazaki, S.; Chinzei, T.; Asakura, S. Sens. Actuators B 2003, 93, 468. https://doi.org/10.1016/S0925-4005(03)00201-6
  19. Shanak, H.; Schmitt, H.; Nowoczin, J.; Ziebert, C. Solid State Ionics 2004, 171, 99. https://doi.org/10.1016/j.ssi.2004.04.001
  20. Chen, H.; Xu, N.; Deng, S.; Lu, D.; Li, Z.; Zhou, J.; Chen, J. Nanotechnology 2007, 18, 205701. https://doi.org/10.1088/0957-4484/18/20/205701
  21. Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.; Yoshida, Y.; Yasuda, T.; Segawa, Y. Appl. Phys. Lett. 1998, 72, 2466. https://doi.org/10.1063/1.121384
  22. Tang, H. P.; He, H. P.; Zhu, L. P.; Ye, Z. Z.; Zhi, M. J.; Yang, F.; Zhao, B. J. Phys. 2006, D39, 3764.
  23. Peng, W. Q.; Qu, S. C.; Cong, G. W.; Wang, Z. G. Appl. Phys. Lett. 2006, 88, 101902. https://doi.org/10.1063/1.2182010
  24. Yang, H. Y.; Lau, S. P.; Yu, S. F. Appl. Phys. Lett. 2006, 89, 081107. https://doi.org/10.1063/1.2338525
  25. Wang, J. R.; Ye, Z. Z.; Huang, J. Y.; Ma, Q. B.; Gu, X. Q.; He, H. P.; Zhu, L. P.; Lu, J. G. Materials Letters 2008, 62, 1263. https://doi.org/10.1016/j.matlet.2007.08.024
  26. Wang, F.; Zhao, C.; Liu, B.; Yuan, S. J. Phys. D: Appl. Phys. 2009, 42, 115411. https://doi.org/10.1088/0022-3727/42/11/115411
  27. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Nano Lett. 2005, 5, 667. https://doi.org/10.1021/nl050082v
  28. Kuang, Q.; Lao, C. S.; Li, Z.; Liu, Y. Z.; Xie, Z. X.; Zheng, L. S.; Wang, Z. L. J. Phys. Chem. C 2008, 112, 11539. https://doi.org/10.1021/jp802880c
  29. Wright, J. S.; Lim, W.; Gila, B. P.; Pearton, S. J.; Johnson, J. L.; Ural, A.; Ren, F. Sens. Actuators B 2009, 140, 196. https://doi.org/10.1016/j.snb.2009.04.009
  30. Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T. J. Alloy. Compd. 2009, 488, L21. https://doi.org/10.1016/j.jallcom.2009.08.124
  31. Du, A. J.; Smith, S. C.; Yao, X. D.; Lu, G. Q. J. Am. Chem. Soc. 2007, 129, 10201. https://doi.org/10.1021/ja0722776
  32. Jimenez-Cadena, G.; Riu, J.; Rius, F. X. Analyst 2007, 132, 1083. https://doi.org/10.1039/b704562j

Cited by

  1. Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts vol.16, pp.27, 2014, https://doi.org/10.1039/C4CE00153B
  2. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles vol.11, pp.6, 2015, https://doi.org/10.1007/s13391-015-5224-5
  3. Influence of Electron Velocity and Hydrogenic Impurity on the Properties of the Bound Magnetopolarons in Quantum Disks in a Magnetic Field vol.180, pp.5-6, 2015, https://doi.org/10.1007/s10909-015-1317-7
  4. Nanorod Arrays for CO Detection at High Temperature vol.8, pp.14, 2016, https://doi.org/10.1021/acsami.6b01709
  5. Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method vol.29, pp.17, 2018, https://doi.org/10.1007/s10854-018-9604-0
  6. Tunable blue-green-emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs vol.9, pp.1, 2012, https://doi.org/10.1186/1556-276x-9-20
  7. Broad range tuning of structural and optical properties of Zn x Mg1−x O nanostructures grown by vapor transport method vol.49, pp.46, 2016, https://doi.org/10.1088/0022-3727/49/46/465103