• 제목/요약/키워드: Harmonic vibrational frequencies

검색결과 39건 처리시간 0.017초

Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the Lowest Triplet States. Density Functional Theory Study

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.93-98
    • /
    • 1998
  • The molecular geometries and harmonic vibrational frequencies of biphenyl in the ground and the first excited triplet states have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G* basis set. Structural change occurs from a twisted benzene-like to a planar quinone-like form upon the excitation to the first excited state. Scaled harmonic vibrational frequencies for the ground state obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.

Molecular Structure and Vibrational Spectra of 9-Fluorenone Density Functional Theory Study

  • 이상연;부봉현
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.760-764
    • /
    • 1996
  • The molecular geometry and vibrational frequencies of 9-fluorenone have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP) density functional methods with 6-31G* basis set. Harmonic vibrational frequencies obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals are newly assigned based on the B3LYP results. The B3LYP calculation is reconfirmed to be useful in the assignment of the fundamental vibrational frequencies.

Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study

  • Kolaski, Maciej;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1998-2004
    • /
    • 2012
  • We carried out DFT calculations for monohydrated sulfuric and phosphoric acids. We are interested in clusters which differ in orientation of hydrogen atoms only. Such molecular complexes are close in energy, since they lie in the vicinity of the global minimum energy structure on the flat potential energy surface. For monohydrated sulfuric acid we identified four different isomers. The monohydrated phosphoric acid forms five different conformers. These systems are difficult to study from the theoretical point of view, since binding energy differences in several cases are very small. For each structure, we calculated harmonic vibrational frequencies to be sure that if the optimized structures are at the local or global minima on the potential energy surface. The analysis of calculated -OH vibrational frequencies is useful in interpretation of infrared photodissociation spectroscopy experiments. We employed four different DFT functionals in our calculations. For each structure, we calculated binding energies, thermodynamic properties, and harmonic vibrational frequencies. Our analysis clearly shows that DFT approach is suitable for studying monohydrated inorganic acids with different hydrogen atom orientations. We carried out MP2 calculations with aug-cc-pVDZ basis set for both monohydrated acids. MP2 results serve as a benchmark for DFT calculations.

Dimethyldioxirane의 분자구조와 Vibrational Frequencies에 대한 양자역학적 고찰 (Quantum Mechanical Investigation for the Structure and Vibrational Frequencies of Dimethyldioxirane)

  • 강창덕;김승준
    • 대한화학회지
    • /
    • 제42권1호
    • /
    • pp.9-15
    • /
    • 1998
  • Dimethyldioxirane$[(CH_3)_2CO_2]$의 분자구조, vibrational frequencies 그리고 infrared(IR) 스펙트럼의 세기(intensity)등에 대한 이론적 연구를 high level ab initio 양자역학적 방법(CISD,CCSD, CCDS(T))을 사용하여 수행하였다. 분자구조의 경우 C-O와 O-O에 대한 결합길이는 parent dixoirane$(CH_2O_2)$과 유사한 결과를 보여주었으며, electron correlation effect의 영향이 C-C나 C-H결합길이 보다 더 크게 작용하였다. 사용된 basis sets(DZ,DZP, TZP, 그리고 TZ2P)에 대해서는 polarization function의 역할이 매우 중요한 것으로 나타났으며 triple zeta(TZ)에 의한 효과는 상대적으로 나타났다. 한편 계산된 harmonic vibrational frequency들을 실험결과 및 다른 이론 계산결과와 비교, 분석하였으며 IR intencity에 근거하여 각 vibrational mode를 assign하였다.

  • PDF

알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰 (Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction)

  • 강창덕;김승준
    • 대한화학회지
    • /
    • 제42권2호
    • /
    • pp.161-171
    • /
    • 1998
  • 알켄-오존 반응에서 생성된 중간 생성물로써 primary ozonide (POZ),secondary ozonide (SOZ)그리고 carbonyl oxide의 분자구조, vibrational frequencies그리고 infrared(IR)스펙트럼의 세기 등에 대한 이론적 연구를 high level ab initio 양자역학적 방법(CISD,CCSD)을 사용하여 수행하였다. 일반적으로, polarization function은 결합각과 결합길이를 감소시키는 경향을 보였고 반면, electron correlation effect는 결합길이와 결합각을 약간 증가시키는 경향을 보이고 있다. Carbonyl oxide의 분자구조는 zwitterionic form이 diradical form보다 더 안정한 것으로 예측되었으며, 두 형태의 에너지는 차이는 TZ2P CISD level에서 약 22.4 kcal/mol인 것으로 계산되었다. 또한, POZ과 SOZ의 분자구조 및 harmonic vibrational frequencies들을 실험결과와 비교 분석하였으며 IR세기에 근거하여 각 vibrational mode를 assign 하였다.

  • PDF

Density Functional Theory Calculation of Molecular Structure and Vibrational Spectra of Dibanzofuran in the Ground Lowest Triplet State.

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권6호
    • /
    • pp.605-610
    • /
    • 2001
  • The molecular geometries and harmonic vibrational frequencies of dibenzofuran in the ground and lowest triplet state have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP)density functional methods with the 6-31G basis set. Upon the excitation to the lowest triplet state, the molecular structure retains the planar form but distorts from a benzene-like to a quinone-like form in skeleton. Scaled vibrational frequencies for the ground and lowest triplet state obtained from the B3LYP calculation show excellent agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.

Ab Initio Quantum Mechanical Investigation of H2(An+1X2n)H2(A=C or Si, X=O or S, n = 1-2)]; Energetics, Molecular Structures, and Vibrational Frequencies

  • Choi, Kun-Sik;Kim, Hong-Young;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.119-126
    • /
    • 2005
  • The geometrical parameters, vibrational frequencies, and relative energies of H$_2$(A$_{n+1}$X$_{2n}$)H$_2$ (A=C or Si, X=O or S, n = 1-2) oligomers have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest level of theory employed in this study is cc-pVTZ CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization and the relative energies.

Theoretical Approach for the Structures, Energetics and Spectroscopic Properties of (H2O3)n (n = 1-5) Clusters

  • Seo, Hyun-Il;Bahng, Jin-Ah;Kim, Yeon-Cheol;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3017-3024
    • /
    • 2012
  • The geometrical parameters, vibrational frequencies, and binding energies for $(H_2O_3)_n$ (n = 1-5) have been investigated using various quantum mechanical techniques. The possible structures of the clusters (n = 2-5) are fully optimized and the binding energies are predicted using energy differences at each optimized geometry. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the binding energy. The best estimation of the binding energy for the dimer is 8.65 kcal/mol. For n = 2 and 3, linear structures with all trans forms of the HOOOH monomers are predicted to be the lowest conformations in energy, while the cyclic structures with all cis-HOOOH monomers are preferable structures for n = 4 and 5.

Theoretical Investigation of the Hydrogen-bonded Halide-acetylene Anion Complexes

  • Byeong-Seo Cheong
    • 대한화학회지
    • /
    • 제68권2호
    • /
    • pp.65-73
    • /
    • 2024
  • The halide-acetylene anions, X--HCCH (X = F, Cl, and Br) have been studied by using several different ab initio and DFT methods to determine structures, hydrogen-bond energies, vibrational frequencies of the anion complexes. Although the halide-acetylene complexes all have linear equilibrium structures, it is found that the fluoride complex is characterized with distinctively different structure and interactions compared to those of the chloride and bromide complexes. The performance of various density functionals on describing ionic hydrogen-bonded complexes is assessed by examining statistical deviations with respect to high level ab initio CCSD(T) results as reference. The density functionals employed in the present work show considerably varying degrees of performance depending on the properties computed. The performances of each density functional on geometrical parameters related with the hydrogen bond, hydrogen-bond energies, and scaled harmonic frequencies of the anion complexes are examined and discussed based on the statistical deviations.

1,2-, 1,3-dioxetanes, 그리고 1,3-cyclodisiloxane의 분자구조, 에너지와 진동주파수에 대한 순 이론 양자 역학적 연구 (Ab Initio Quantum Mechanical Studies of 1,2-, 1,3-Dioxetanes and 1,3-Cyclodisiloxane; Energetics, Molecular Structures, Vibrational Frequencies)

  • 최근식;김승준
    • 대한화학회지
    • /
    • 제47권4호
    • /
    • pp.325-333
    • /
    • 2003
  • 1,2-와 1,3-dioxetane$(C_2O_2H_4)$, 그리고 1,3-cyclodisiloxane$(Si_2O_2H_4)$에 대하여 높은 이론 수준에서 분자구조, 진동주파수, 그리고 에너지 등을 계산하였다. 위의 모든 분자들에 대하여 TZ2P CCSD(T)의 이론 수준까지 분자구조를 최적화 하였으며. 진동주파수는 여러 basis set에서 SCF 방법으로 계산하였다. 본 연구에서 최적화된 분자구조들에 대한 진동주파수가 모두 실수(real number)로 예측됨으로서, 제안된 모든 분자구조가 local minimum 구조임을 확인하였다. 1,2- 및 1,3-dioxetane들과 cyclodisiloxane이 두 분자의 aldehyde와 silanone으로 해리 될 때의 중합에너지를 zero-point vibrational energy(ZPVE)를 고려하여 계산하고, 안정성을 비교하였다.