References
- Kim, E.; Kim, S.; Kim, B. Bull. Korean Chem. Soc. 2011, 32, 3183-3186. https://doi.org/10.5012/bkcs.2011.32.8.3183
- Bang, J. K.; Jung, S.; Kim, Y.; Kim, M. Bull. Korean Chem. Soc. 2011, 32, 2871-2872. https://doi.org/10.5012/bkcs.2011.32.8.2871
- Dua, P.; Chaudhari, K. N.; Lee, C. H.; Chaudhari, N. K.; Hong, S. W.; Yu, J. S.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2011, 32, 2051-2057. https://doi.org/10.5012/bkcs.2011.32.6.2051
- Xu, L.; Henkelman, G. Phys. Rev. B 2008, 77, 205404-205416. https://doi.org/10.1103/PhysRevB.77.205404
- Alfonso, D. R.; Jaffe, J. E.; Hess, A. C.; Gutowski, M. Surf. Sci. 2000, 466, 111-118. https://doi.org/10.1016/S0039-6028(00)00737-8
- Lian, J. C.; Finazzi, E.; Di Valentin, C.; Risse, T.; Gao, H. J.; Pacchioni, G.; Freund, H. J. Chem. Phys. Lett. 2008, 450, 308-311. https://doi.org/10.1016/j.cplett.2007.11.049
- Finazzi, E.; Valentin, C. D.; Pacchioni, G.; Chiesa, M.; Giamello, E.; Gao, H. J.; Lian, J. C.; Risse, T.; Freund, H. J. Chem. Eur. J. 2008, 14, 4404-4409. https://doi.org/10.1002/chem.200702012
- Bendiab, N.; Righi, A.; Anglaret, E.; Sauvajol, J. L.; Duclaux, L.; Beguin, F. Chem. Phys. Lett. 2001, 339, 305-310. https://doi.org/10.1016/S0009-2614(01)00351-7
- Suzuki, S.; Bower, C.; Matanabe, Y.; Zhou, O. Appl. Phys. Lett. 1999, 76, 4007-4010.
- Kakkar, R.; Kapoor, P. N. J. Phys. Chem. B 2004, 108, 18140- 18148. https://doi.org/10.1021/jp0470546
- Wilson, M. J. Phys. Chem. B 1997, 101, 4917-4924. https://doi.org/10.1021/jp970712k
- Zhan, J.; Bando, Y.; Hu, J.; Golberg, D. Inorg. Chem. 2004, 43, 2462-2464. https://doi.org/10.1021/ic0351489
- Shein, I. R.; Enyashin, A. N.; Ivanovskii, A. L. Phys, Rev. B 2007, 75, 245404-245408. https://doi.org/10.1103/PhysRevB.75.245404
- Beheshtian, B.; Kamifiroozi, M.; Bagheri, Z.; Ahmadi, A. Phys. E 2011, 44, 546-549. https://doi.org/10.1016/j.physe.2011.09.016
- Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364-382. https://doi.org/10.1021/ct0502763
- Ramraj, A.; Hillier, I. H.; Vincent, M. A.; Burton, N. A. Chem. Phys. Lett. 2010, 484, 295-298. https://doi.org/10.1016/j.cplett.2009.11.068
- Stepanian, S. G.; Karachevtsev, M. V.; Glamazda, A. Y.; Karachevtsev, V. A.; Adamowicz, L. Chem. Phys. Lett. 2008, 459, 153-158. https://doi.org/10.1016/j.cplett.2008.05.035
- Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363. https://doi.org/10.1002/jcc.540141112
- Xu, R.; Gong, W.; Zhang, X.; Wang, L.; Hong, F. Chin. J. Chem. Phys. 2010, 23, 538-542. https://doi.org/10.1088/1674-0068/23/05/538-542
- Li, S. S. Semiconductor Physical Electronics, 2nd ed.; Springer: 2006; USA.
- Louie, S. Top. Appl. Phys. 2001, 80, 113-146. https://doi.org/10.1007/3-540-39947-X_6
- Miyake, T.; Saito, S. Phys. Rev. B 2005, 72, 073404-073409. https://doi.org/10.1103/PhysRevB.72.073404
Cited by
- DFT study of ozone dissociation on BC3 graphene with Stone–Wales defects vol.20, pp.1, 2014, https://doi.org/10.1007/s00894-014-2071-5
- A theoretical study on the adsorption of neutral and zwitterionic glycine on an MgO nanotube vol.146, pp.10, 2015, https://doi.org/10.1007/s00706-015-1418-7
- Theoretical investigation of properties of boron nitride nanocages and nanotubes as high-performance anode materials for lithium-ion batteries vol.95, pp.6, 2017, https://doi.org/10.1139/cjc-2017-0070
- DFT studies of Hydrogen adsorption and dissociation on MgO nanotubes vol.15, pp.2, 2016, https://doi.org/10.3233/mgc-150189
- Adsorption of syn−propanethial S−oxide on the Zn12O12 cluster: insights from ab-initio modelling vol.42, pp.3, 2012, https://doi.org/10.1080/17415993.2021.1881097