DOI QR코드

DOI QR Code

Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

  • Ranganathan, Suresh (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Raju, Prabu (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Arunachalam, Vijayaraj (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Krishnamoorty, Giribabu (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Ramadoss, Manigandan (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Arumainathan, Stephen (Department of Nuclear Physics, University of Madras, Guindy Maraimalai Campus) ;
  • Vengidusamy, Narayanan (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus)
  • Received : 2012.01.12
  • Accepted : 2012.03.12
  • Published : 2012.06.20

Abstract

Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction $etc.$, The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA).

Keywords

References

  1. Li, M.; Guo, Y.; Wei, Y.; Macdiarmid, G. A.; Lelkes, I. P. Biomaterials 2006, 27, 2705. https://doi.org/10.1016/j.biomaterials.2005.11.037
  2. Zhou, X.; Cha, H.; Yang, C.; Zhang, W. Anal. Chim. Acta 1996, 329, 105. https://doi.org/10.1016/0003-2670(96)00098-0
  3. Yang, Y.; Mu, S. J. Electroanal. Chem. 1996, 415, 71. https://doi.org/10.1016/S0022-0728(96)04702-X
  4. Kwon, S. J.; Seo, M.; Yang, H.; Kim, S. Y.; Kwak, J. Bull. Korean Chem. Soc. 2010, 31, 3103. https://doi.org/10.5012/bkcs.2010.31.11.3103
  5. Yang, J.; Burkinshaw, M. S.; Zhou, J.; Monkman, P. A.; Brown, P. J. Adv. Mater. 2003, 15, 1081. https://doi.org/10.1002/adma.200304608
  6. Karg, S.; Scott, J. C.; Salem, J. R.; Angelopoulos, M. Synth. Met. 1996, 80, 111. https://doi.org/10.1016/S0379-6779(96)03690-9
  7. Harlev, E.; Gulakhmedova, T.; Rubiniovich, I.; Aizenshtein, G. Adv. Mater. 1996, 8, 994. https://doi.org/10.1002/adma.19960081211
  8. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T. Synth. Met. 1996, 82, 207. https://doi.org/10.1016/S0379-6779(96)03790-3
  9. Alam, M. M.; Wang, J.; Guo, Y.; Lee, P. S.; Tseng, R. H. J. Phys. Chem. B 2005, 109, 12777. https://doi.org/10.1021/jp050903k
  10. Tseng, J. R.; Haung, J.; Ouyang, J.; Kaner, B. R.; Yang, Y. Nano. Lett. 2005, 5, 1077. https://doi.org/10.1021/nl050587l
  11. Wang, J.; Chan, S.; Carlsoin, R. R.; Luo, Y.; Ge, G.; Ries, S. R.; Heath, R. J.; Tseng, R. H. Nano. Lett. 2004, 4, 1693. https://doi.org/10.1021/nl049114p
  12. Ryu, K. S.; Kim, K. M.; Hong, Y. S.; Park, Y. J.; Chang, S. H. Bull. Korean Chem. Soc. 2002, 23, 1144. https://doi.org/10.5012/bkcs.2002.23.8.1144
  13. Roy, B. C.; Gupta, M. D.; Bhowmilk, L.; Ray, J. K. Bull. Mater. Sci. 2001, 24, 389. https://doi.org/10.1007/BF02708636
  14. Iwuhoa, E. I.; Mavundla, S. E.; Somerset, V. S.; Petrik, L. F.; Klink, M. J.; Sekota, M.; Baker, P. Microchim. Acta 2006, 155, 453. https://doi.org/10.1007/s00604-006-0584-z
  15. Huang, J.; Kaner, R. B. J. Am. Chem. Soc. 2004, 126, 851. https://doi.org/10.1021/ja0371754
  16. Sayyah, S. M.; Kamal, S. M.; Abd El-Rehim, S. S.; Ibrahim, M. A. Int. J. Poly. Mater. 2006, 55, 339. https://doi.org/10.1080/009140390953520
  17. Norris, I. D.; Kane-Maguire, L. A. P.; Wallace, G G. Macromolecules 2000, 33, 3237. https://doi.org/10.1021/ma991339c
  18. Rivas, B. L.; Sanchez, C. O.; Bernede, J. C.; Mollinie, P. Polymer Bulletin 2002, 49, 257. https://doi.org/10.1007/s00289-002-0104-1
  19. Sayyah, S. M.; Azooz, R. E.; Abd El-Rehim, S. S.; El-Rabiey, M. M. Int. J. Poly. Mater. 2006, 55, 37. https://doi.org/10.1080/009140390909763
  20. Huang, L.; Wen, T.; Gopalan, A. Mater. Lett. 2003, 57, 1765. https://doi.org/10.1016/S0167-577X(02)01066-2
  21. Yan, H.; Wang, H. J.; Adisasmito, S.; Toshima, N. Bull. Chem. Soc. Jpn. 1996, 69, 2395. https://doi.org/10.1246/bcsj.69.2395
  22. Chan, S. H.; Ng, C. S.; Sim, S. W.; Tan, L. K.; Tan, G. T. B. Macromolecules 1992, 25, 6029. https://doi.org/10.1021/ma00048a026
  23. Ghadimi, F.; Safa, K. D.; Massoumi, B.; Entezami, A. A. Iran. Polym. J. 2002, 11, 159.
  24. Penner, R. M.; Martin, C. R. J. Electrochem. Soc. 1986, 133, 310. https://doi.org/10.1149/1.2108568
  25. Zhang, L.; Peng, H.; Fang, C.; Kilmartin, P. A.; Travas sejdic, J. Nanotechnology 2007, 18, 115607. https://doi.org/10.1088/0957-4484/18/11/115607
  26. Kunglin, H.; An chen, S. Macromolecules 2000, 33, 8117. https://doi.org/10.1021/ma000660o
  27. Han, D.; Song, J.; Ding, X.; Xu, X.; Niu, L. Mater. Chem. Phy. 2007, 105, 380. https://doi.org/10.1016/j.matchemphys.2007.05.002
  28. Han, M. G.; Cho, S. K.; Oh, S. G.; Im, S. S. Synth. Met. 2002, 126, 53. https://doi.org/10.1016/S0379-6779(01)00494-5
  29. Han, J.; Song, G.; Guo, R. Adv. Mater. 2006, 18, 3140. https://doi.org/10.1002/adma.200600282
  30. Luo, C.; Peng, H.; Zhang, L.; Lu, G. L.; Wang, Y.; Sejdic, J. T. Macromolecules 2011, 44, 6899. https://doi.org/10.1021/ma201350m
  31. Laviron, E. J. Electroanal. Chem. 1974, 52, 355. https://doi.org/10.1016/S0022-0728(74)80448-1
  32. Yang, G.; Tan, L.; Shi, Y.; Wang, S.; Lu, X.; Bai, H.; Yang, Y. Bull. Korean Chem. Soc. 2009, 30, 454. https://doi.org/10.5012/bkcs.2009.30.2.454
  33. Wang, L.; Huang, P.; Bai, J.; Wang, H.; Wu, X.; Zhao, Y. Int. J. Electrochem. Sci. 2006, 1, 334.
  34. Wang, Y. Microchim Acta DOI 10.1007/s00604-010-0510-2
  35. Chang, J. L.; Chang, K. H.; Hu, C. C.; Cheng, W. L.; Zen, J. M., Electrochem. Commun. 2010, 12, 596. https://doi.org/10.1016/j.elecom.2010.02.008
  36. Wu, K.; Sun, Y.; Hu, S. Sens. Actuators B 2003, 96, 658. https://doi.org/10.1016/j.snb.2003.07.011
  37. Tan, L.; Yang, G. M.; Wang, P.; Xie, Z. Y.; Bai, H. P.; Lu, X. X.; Yang, Y. H. Anal. Lett. 2008, 41 2860. https://doi.org/10.1080/00032710802421848
  38. Wang, S.; Lu, L.; Lin, X. Electroanalysis 2004, 16, 1734. https://doi.org/10.1002/elan.200303021

Cited by

  1. Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1757-x
  2. Polyanthranilic acid vol.124, pp.1, 2016, https://doi.org/10.1007/s10973-015-5121-z
  3. Elucidation of Electrical and Optical Parameters of Poly(o-anthranilic acid)-poly(o-amino phenol)/Copper Oxide Nanocomposites Thin Films vol.28, pp.6, 2018, https://doi.org/10.1007/s10904-018-0945-1
  4. Synthesis, structural and optical properties of Eskolaite nanoparticles derived from Cr doped polyanthranilic acid (CrPANA) vol.1122, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.05.071
  5. Dielectric properties of synthesized ternary hybrid nanocomposite embedded in poly (vinyl alcohol) matrix films vol.29, pp.7, 2012, https://doi.org/10.1177/0967391120951406