DOI QR코드

DOI QR Code

One-Pot Synthesis, Crystal Structures and Thermal Properties of Two Three-Dimensional Cobalt(II) Complexes

  • Tao, Bo (Faculty of Material Science and Chemistry Engineering, China University of Geosciences) ;
  • Lei, Wen (Faculty of Material Science and Chemistry Engineering, China University of Geosciences) ;
  • Cheng, Feiran (Faculty of Material Science and Chemistry Engineering, China University of Geosciences) ;
  • Xia, Hua (Faculty of Material Science and Chemistry Engineering, China University of Geosciences)
  • Received : 2012.02.16
  • Accepted : 2012.03.06
  • Published : 2012.06.20

Abstract

Two cobalt(II) compounds $[Co(2,2{^\prime}-bipy)(H_2O)_2(SO_4)]_n$ (1) and $[Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6]{\cdot}2H_2O$ (2) (2,2'-bipy = 2,2'-bipyridine, $H_4btec$ = 1,2,4,5-benzenetetracarboxylic acid), have been simultaneously synthesized by a one-pot slow solvent evaporation reaction. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction (XRPD), IR, elemental and thermogravimetric analysis (TGA). The structural analysis reveals that compound 1 exhibits an infinite 1D chain structure with the octahedral Co(II) centers bridging by the tetrahedral ${\mu}_2-SO{_4}^{2-}$ ligands, while compound 2 possesses a dinuclear $Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6$ unit and the two adjacent octahedral Co(II) ions are linked by the bismonodentately coordinated btec ligand. Additionally, compound 2 exhibits blue fluorescent emission in the solid state at room temperature.

Keywords

References

  1. Kondo, M.; Shimamura, M.; Noro, S.; Minakoshi, S.; Asami, A.; Seki, K.; Kitagawa, S. Chem. Mater. 2000, 12, 1288. https://doi.org/10.1021/cm990612m
  2. Evans, O. R.; Lin, W. B. Acc. Chem. Res. 2002, 35, 511. https://doi.org/10.1021/ar0001012
  3. Majumder, A.; Gramlich, V.; Rosair, G. M.; Batter, S. R.; Masuda, J. D.; Fallah, M. S. E.; Ribas, J.; Sutter, J. P.; Desplanches, C.; Mitra, S. Cryst. Growth Des. 2006, 6, 2355. https://doi.org/10.1021/cg060337y
  4. Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875. https://doi.org/10.1021/ja9015765
  5. Chen, B. L.; Xiang, S. C.; Qian, G. D. Acc. Chem. Res. 2010, 43, 1115. https://doi.org/10.1021/ar100023y
  6. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810. https://doi.org/10.1021/cr200077m
  7. Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688. https://doi.org/10.1021/cr100160e
  8. Lin, Z. J.; Tong, M. L. Coord. Chem. Rev. 2011, 255, 421. https://doi.org/10.1016/j.ccr.2010.10.006
  9. Ellena, J.; Paparidis, N.; Martins, F. T. CrystEngComm. 2012, DOI: 10.1039/C2CE06303D
  10. Gdaniec, M.; Jankowski, W.; Milewska, M.; Polonski, T. Angew. Chem. Int. Ed. 2003, 42, 3903. https://doi.org/10.1002/anie.200351432
  11. Roesky, H. W.; Andruh, M. Coord. Chem. Rev. 2003, 236, 91. https://doi.org/10.1016/S0010-8545(02)00218-7
  12. Oh, M.; Carpenter, G. B.; Sweigart, D. A. Acc. Chem. Res. 2004, 37, 1. https://doi.org/10.1021/ar030175o
  13. Mingos, D. M. P. Supramolecular Assembly via Hydrogen Bonds II. Structure and Bonding, 111; Springer: New York, 2004.
  14. Fabelo, O.; Canadillas-Delgado, L.; Delgado, F. S.; Lorenzo-Luis, P.; Laz, M. M.; Julve, M.; Ruiz-Perez, C. Cryst. Growth Des. 2005, 5, 1163. https://doi.org/10.1021/cg049625p
  15. Li, Z.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2009, 131, 634. https://doi.org/10.1021/ja806663h
  16. Schneider, H. J. Angew. Chem. Int. Ed. 2009, 48, 3924. https://doi.org/10.1002/anie.200802947
  17. Biradha, K.; Su, C. Y.; Vittal, J. J. Cryst. Growth Des. 2011, 11, 875. https://doi.org/10.1021/cg101241x
  18. Kumagai, H.; Kepert, C. J.; Kurmoo, M. Inorg. Chem. 2002, 41, 3410. https://doi.org/10.1021/ic020065y
  19. Li, Y. G.; Hao, N.; Lu, Y.; Wang, E. B.; Kang, Z. H.; Hu, C. W. Inorg. Chem. 2003, 42, 3119. https://doi.org/10.1021/ic026306j
  20. Qi, Y.; Luo, F.; Che, Y. X.; Zheng, J. M. Cryst. Growth Des. 2008, 8, 606. https://doi.org/10.1021/cg700758c
  21. Brown, K.; Zolezzi, S.; Aguirre, P.; Venegas-Yazigi, D.; Paredes- Garcia, V.; Baggio, R.; Novak, M. A.; Spodine, E. Dalton Trans. 2009, 1422.
  22. Wen, L. L.; Wang, F.; Feng, J.; Lv, K. L.; Wang, C. G.; Li, D. F. Cryst. Growth Des. 2009, 9, 3581. https://doi.org/10.1021/cg900317d
  23. Song, L. F.; Jiang, C. H.; Jiao, C. L.; Zhang, J.; Sun, L. X.; Xu, F.; You, W. S.; Wang, Z. G.; Zhao, J. J. Cryst. Growth Des. 2010, 10, 5020. https://doi.org/10.1021/cg100599z
  24. Hu, J. S.; Huang, L. F.; Yao, X. Q.; Qin, L.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G.; Xue, Z. L. Inorg. Chem. 2011, 50, 2404. https://doi.org/10.1021/ic102207n
  25. Cao, R.; Sun, D. F.; Liang, Y. C.; Hong, M. C.; Tatsumi, K.; Shi, Q. Inorg. Chem. 2002, 41, 2087. https://doi.org/10.1021/ic0110124
  26. Cho, J.; Lough, A. J.; Kim, J. C. Inorg. Chim. Acta 2003, 342, 305. https://doi.org/10.1016/S0020-1693(02)01149-0
  27. Zhang, L. J.; Xu, J. Q.; Shi, Z.; Zhao, X. L.; Wang, T. G. J. Solid State Chem. 2003, 32, 32.
  28. Correa, C. C.; Diniz, R.; Janczak, J.; Yoshida, M. I.; Oliveira, L. F. C.; Machado, F. C. Polyhedron 2010, 29, 3125. https://doi.org/10.1016/j.poly.2010.08.018
  29. Ye, B. H.; Tong, M. L.; Chen, X. M. Coord. Chem. Rev. 2005, 249, 545. https://doi.org/10.1016/j.ccr.2004.07.006
  30. Tian, Y. P.; Zhu, Y. M.; Zhou, H. P.; Wang, P.; Wu, J. Y.; Tao, X. T.; Jiang, M. H. Eur. J. Inorg. Chem. 2007, 345.
  31. Cao, R.; Shi, Q.; Sun, D. F.; Hong, M. C.; Bi, W. H.; Zhao, Y. J. Inorg. Chem. 2002, 41, 6161. https://doi.org/10.1021/ic0258577
  32. Allardyce, C. S.; Dyson, P. J. Bioorganomet. Chem. 2006, 17, 177. https://doi.org/10.1007/3418_001
  33. Delehanty, J. B.; Bongard, J. E.; Thach, D. C.; Knight, D. A.; Hickey, T. E.; Chang, E. L. Bioorg. Med. Chem. 2008, 16, 830. https://doi.org/10.1016/j.bmc.2007.10.022
  34. Colak, A. T.; Colak, F.; Yesilel, O. Z.; Akduman, D.; Yilmaz, F.; Tumer, M. Inorg. Chim. Acta 2010, 363, 2149. https://doi.org/10.1016/j.ica.2010.03.007
  35. Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Solution; University of Gottingen: Germany, 1997.
  36. Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement; University of Gottingen: Germany, 1997.
  37. Konar, S.; Zangrando, E.; Chaudhuri, N. R. Inorg. Chim. Acta 2003, 355, 264. https://doi.org/10.1016/S0020-1693(03)00367-0
  38. Zheng, Y. Q.; Lin, J. L. Z. Anorg. Allg. Chem. 2003, 629, 1622. https://doi.org/10.1002/zaac.200300003
  39. Qian, H. F. Transition Met. Chem. 2006, 31, 347. https://doi.org/10.1007/s11243-005-6434-8
  40. Ou, G. C.; Wang, Z. Z.; Yang, L. Z.; Zhao, C. Y.; Lu, T. B. Dalton Trans. 2010, 39, 4274. https://doi.org/10.1039/b921141a
  41. Li, X. H.; Chi, X. X. Acta Crystallogr. Sect. E 2004, 60, 1301.
  42. Qi, Y. J.; Li, H.; Guo, F. J.; Cao, M. H.; Hu, C. W. J. Coord. Chem. 2006, 59, 505. https://doi.org/10.1080/00958970500358615
  43. Berti, E.; Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Orlandini, A.; Pitzalis, E. Inorg. Chem. Commum. 2002, 5, 1041. https://doi.org/10.1016/S1387-7003(02)00640-8
  44. Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley: New York, 1958.
  45. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; Wiley: New York, 1978.
  46. Hou, Y.; Wang, S. T.; Shen, E. H.; Wang, E. B.; Xiao, D. R.; Li, Y. G.; Xu, L.; Hu, C. W. Inorg. Chim. Acta 2004, 357, 3155. https://doi.org/10.1016/j.ica.2004.03.019
  47. Chen, C.; Liu, Y. L.; Wang, S. H.; Li, G. H.; Bi, M. H.; Yi, Z.; Pang, W. Q. Chem. Mater. 2006, 18, 2950. https://doi.org/10.1021/cm052395x

Cited by

  1. Effect of organic bicarboxylates on the structures of cobalt(II) coordination polymers derived from a semi-rigid bis(benzimidazole) derivative vol.38, pp.4, 2013, https://doi.org/10.1007/s11243-013-9692-x
  2. Assembly and Catalytic Properties of a 3D (4,6)-connected Cobalt-organic Framework with fsh Topology vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.651
  3. Three-Dimensional Tetranuclear Cd(II) Coordination Network Based on a 1,3-Alternate Calix[4]arene Derivative vol.36, pp.8, 2015, https://doi.org/10.1002/bkcs.10373
  4. Crystal structure of a 3D Ag(I) coordination polymer based on flexible bis(benzimidazole) and 5-nitroisophthalic acid co-ligands vol.56, pp.4, 2015, https://doi.org/10.1134/S0022476615040265
  5. Influence of Flexible Bis(benzimidazole) Derivatives on the Self-assembly of Three Mixed Ligands Silver(I) Coordination Polymers vol.642, pp.8, 2016, https://doi.org/10.1002/zaac.201600025
  6. A High-connected Cobalt(II) Pyromellitate MOF Displaying An Uncommon Decadentate Coordination Mode vol.35, pp.11, 2012, https://doi.org/10.5012/bkcs.2014.35.11.3349