Feasibility of $In$ $vivo$ Proton Magnetic Resonance Spectroscopy for Lung Cancer

폐암의 생체 수소자기공명분광법의 실행가능성

  • Yoon, Soon-Ho (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center) ;
  • Park, Chang-Min (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center) ;
  • Lee, Chang-Hyun (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center) ;
  • Song, In-Chan (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center) ;
  • Lee, Hyun-Ju (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center) ;
  • Goo, Jin-Mo (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center)
  • 윤순호 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 박창민 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 이창현 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 송인찬 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 이현주 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 구진모 (서울대학교 의과대학 영상의학교실, 서울대학교 의학연구원 방사선의학연구소)
  • Received : 2012.02.20
  • Accepted : 2012.04.25
  • Published : 2012.04.30

Abstract

Purpose : To investigate the feasibility of in vivo proton magnetic resonance spectroscopy (MRS) for evaluation of lung cancer. Materials and Methods: This prospective study was approved by the institutional review board of our hospital and informed consent was obtained in all patients. Ten patients (7 men, 3 women; mean age, 64.4) with pathologicallyproven lung cancer (mean, 56.8 mm; range, 44-77 mm) were enrolled to 1.5 T MRS using a single-voxel respiration-triggered point-resolved spectroscopic sequence. Technical success rate and the reason of technical failure, if any, were investigated. Results: Out of 10 lung cancers, analyzable MRS spectra were obtained in 8 tumors (technical success rate, 80%). Two MRS datasets were not able to be analyzed due to serious baseline distortion. Choline and lipid signals were detected as major metabolites in analyzable MRS spectra. Conclusion: In vivo proton MRS method using a single-voxel respiration-triggered point-resolved spectroscopic sequence is feasible in obtaining the MR spectra of lung cancer because these spectra were analyzable and high success rate was shown in our study although there was the limitation of small patient group.

목적: 폐암의 생체 수소자기공명분광법의 실행가능성을 탐색하고자 하였다. 대상과 방법: 이 전향적 연구는 해당병원의 임상시험심사위원회로 승인을 받았고 모든 환자로부터 사전동의를 받았다. 병리적으로 폐암으로 확인된 (평균 직경, 56.8 mm; 범위, 44-77 mm) 10명의 환자들에서 (남자 7명, 여자 3명; 평균나이, 64.4세) 단일 복셀 수소자기공명분광기법으로 호흡 유발 PRESS (point-resolved spectroscopic sequence)를 사용하여 1.5 T 수소자기공명 분광법을 시행하였다. 스펙트럼 습득의 기술적 성공률을 평가하고 실패한 증례들의 이유를 고찰하였다. 결과: 10개의 폐암 중 8개 폐암에서 분석 가능한 수소자기공명 분광 스펙트럼을 획득했다 (기술적 성공률, 80%). 두 개의 수소자기공명 분광 데이터는 심각한 기준치 왜곡으로 분석할 수 없었다. 대표적인 대사물질로 choline과 lipid들이 관찰되었다. 결론: 비록 제한적 수의 환자에서의 결과이지만 폐암에서 얻어진 생체 수소 자기공명 분광 스펙트럼이 분석가능하고 높은 성공률로 획득하였기 때문에 폐암 환자에서 호흡 유발 PRESS 방법을 사용한 생체 수소자기공명분광법이 실행가능하다고 판단된다.

Keywords

References

  1. Brescia FJ. Lung cancer--a philosophical, ethical, and personal perspective. Crit Rev Oncol Hematol 2001;40:139-148
  2. Mulshine JL, Sullivan DC. Clinical practice. Lung cancer screening. The New England Journal of Medicine 2005;352:2714-2720
  3. Golder W. Magnetic resonance spectroscopy in clinical oncology. Onkologie 2004;27:304-309
  4. Howe FA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2003;49:223-232
  5. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging-clinicopathologic study. Radiology 1999;213:473-480
  6. Yeung DKW, Cheung HS, Tse GMK. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopyoInitial results. Radiology 2001;220:40-46
  7. Allen JR, Prost RW, Griffith OW, Erickson SJ, Erickson BA. In vivo proton (H1) magnetic resonance spectroscopy for cervical carcinoma. Am J Clin Oncol 2001;24:522-529
  8. Hanaoka H, Yoshioka Y, Ito I, Niitu K, Yasuda N. In vitro characterization of lung cancers by the use of 1H nuclear magnetic resonance spectroscopy of tissue extracts and discriminant factor analysis. Magn Reson Med 1993;29:436-440
  9. Yokota H, Guo J, Matoba M, Higashi K, Tonami H, Nagao Y. Lactate, choline, and creatine levels measured by vitro 1H-MRS as prognostic parameters in patients with non-small-cell lung cancer. J Magn Reson Imaging 2007;25:992-999
  10. Duarte IF, Rocha CM, Barros AS, et al. Can nuclear magnetic resonance (NMR) spectroscopy reveal different metabolic signatures for lung tumours? Virchows Arch 2010;457:715-725
  11. Rocha CM, Barros AS, Gil AM, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 2010;9:319-332
  12. Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HB. In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard. Magn Reson Imaging 1993;11:107-118
  13. Stanwell P, Mountford C. In vivo proton MR spectroscopy of the breast. Radiographics 2007;27 Suppl 1:S253-S266
  14. Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographics 2009;29:1653-1664
  15. Opstad KS, Wright AJ, Bell BA, Griffiths JR, Howe FA. Correlations between in vivo (1)H MRS and ex vivo (1)H HRMAS metabolite measurements in adult human gliomas. J Magn Reson Imaging 2010;31:289-297
  16. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and realtime measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:822-834
  17. Guo J, Higashi K, Yokota H, et al. In vitro proton magnetic resonance spectroscopic lactate and choline measurements, 18FFDG uptake, and prognosis in patients with lung adenocarcinoma. J Nucl Med 2004;45:1334-1339
  18. Smith JK, Kwock L, Castillo M. Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol 2000;21:1084-1089
  19. Dydak U, Schar M. MR spectroscopy and spectroscopic imaging: comparing 3.0 T versus 1.5 T. Neuroimaging Clin N Am 2006;16:269-283
  20. Gabr RE, Sathyanarayana S, Schar M, Weiss RG, Bottomley PA. On restoring motion-induced signal loss in single-voxel magnetic resonance spectra. Magn Reson Med 2006;56:754-760
  21. Weiss E, Wijesooriya K, Dill SV, Keall PJ. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D CT. Int J Radiat Oncol Biol Phys 2007;67:296-307
  22. Chen W, Zu Y, Huang Q, et al. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Magn Reson Med 2011;66:1531-1540
  23. Kuo YT, Li CW, Chen CY, Jao J, Wu DK, Liu GC. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging 2004;19:598-604
  24. Gold GE, Pauly JM, Leung AN, et al. Short echo time MR spectroscopic imaging of the lung parenchyma. J Magn Reson Imaging 2002;15:679-684