DOI QR코드

DOI QR Code

A study on use of quantitative risk analysis on life safety performance for the effect of fixed fire fighting system at road tunnel fires

정량적 위험성 평가를 활용한 도로터널 화재시 물분무 소화설비의 피난 안전 효과 연구

  • Received : 2011.11.09
  • Accepted : 2012.01.16
  • Published : 2012.01.31

Abstract

This paper tried to verify whether the fixed fire fighting system (FFFS) that is installed in road tunnel improves evacuation performance or not. Verification was performed according to the Disaster Prevention Facilities Installation and Management Guide at Road Tunnel. Twenty seven different fire scenarios were set up for the verification and the cases that FFFS was installed were compared with the cases that FFFS was not installed. The result of the comparison showed that the average equivalent death was reduced in 26 cases out of 27 cases when water spray extinguishing system was installed. It was confirmed that the risk when was not installed was unacceptable in Hong Kong and the Netherlands. On the other hand, it was confirmed that the risk was reduced to as low as reasonably practicable (ALARP) when was installed. The cumulative frequency of average death in case with FFFS was compared against the frequency of death without FFFS: death of one or more is about 50 times less; 10 or more is about 100 times less; and the death of more than 100 is four times less. It was verified that FFFS makes improved conditions to escape from the fires in road tunnel.

본 논문은 도로터널에 설치하는 물분무소화설비가 피난성능을 개선시키는지를 검증하는 연구이다. 검증의 절차와 방법은 '도로터널 방재시설 설치 및 관리지침'에 따라 수행되었다. 3종류의 화재크기와 27개의 화재시나리오에 대한 화재 평가와 피난 평가를 실시하였다. 결과는 물분무소화설비가 설치된 경우와 설치되지 않은 경우로 구분하여 제시하였다. 물분무소화설비는 27개 시나리오 중에서 26개에서 물분무소화설비가 없는 경우에 비해 사망자가 감소하였다. 물분무소화 설비가 설치되지 않은 경우의 사회적 위험도는 홍콩과 네델란드 기준에서는 수용할 수 없는 범위였다. 반면 물분무소화설비가 있는 경우에는 사회적위험도가 ALARP 범위였다. 결과적으로 물분무소화설비가 있는 경우에는 없는 경우와 비교해서 1명, 10명, 100명 이상의 사망 빈도가 각각 50배, 100배 및 4배로 감소하였다. 결과적으로 물분무소화설비는 도로터널 화재 시 고온기류의 냉각작용과 독성가스의 세척효과를 통해 피난에 유리한 환경을 조성한다는 것을 확인하였다.

Keywords

References

  1. 국토해양부 (2009), "도로터널 방재시설 설치 및 관리지침".
  2. 국토해양부 (2011), "2010년 도로교통량 통계연보".
  3. 박경환, 소수현 (2010), "터널화재 시 물분무소화설비의 성능에 대한 실대시험", 한국터널공학회논문집, Vol. 2, pp. 341-347.
  4. 소수현, 박경환 (2011), "터널 물분무소화설비의 살수밀도분포에 대한 실험연구", 한국터널공학회 논문집, Vol. 13, No. 1, pp. 1-8.
  5. 유지오, 신현준, 이동호 (2006), "도로터널 위험도 평가프로그램 개발에 관한 연구(I)", 대한설비공학회 하계학술발표대회 논문집, pp. 460-467.
  6. 이동호, 임경범, 유지오 (2008), "터널 화재시 수분무 소화설비의 효용성 연구", 한국화재소방학회논문지, Vol. 22, No. 5, pp. 55-60.
  7. Bendelius, A. (1996), Memorial tunnel fire ventilation test programme, Seminar of Smoke and Critical Velocity in Tunnels, London.
  8. McGrattan, K. (2010), Fire Dynamics Simulator (Version 5) Technical Reference Guide, NIST Special Publication 1018-5.
  9. Lakkonen, M., Kratzmeir, S. (2008), Road tunnel protection by water mist systems: Implementation of full scale fire test results into a real project, Third International Symposium on Tunnel Safety and Security.
  10. Magerle, R. (2001), Fire protection systems for traffic tunnels under test, Proceedings of AUBE 01 Conference, NIST.
  11. NFPA 502 (2008), Standard for road tunnel, briges, and other limited access highways.
  12. Persson, M. (2002), Quantitative risk analysis procedure for the fire evacuation of a road tunnel, Department of Fire Safety Engineering, Lund University, Sweden.
  13. Purser, D. (2008), Toxicity assessment of combustion products, The SFPE Handbook of Fire Protection Engineering, 3rd Edition, pp. 2.83-2.187.
  14. Amano, R. (2005), Water screen fire disaster prevention system in underground space, Report of National Research Institute of Fire and Disaster, Vol. 99, pp. 243-249.
  15. www.road.re.kr.