• Title/Summary/Keyword: tunnel fire

Search Result 474, Processing Time 0.03 seconds

Measurement of Ceiling Temperature in Tunnel for Heights and Fire Sizes of Fire Source (화원의 높이 및 화재크기별 터널 천장온도 측정 실험)

  • Park, Won-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.5-10
    • /
    • 2015
  • The "Ondong tunnel" is not used now where is one of the tunnels in the Janghang line which is from Cheonan to Iksan. The length of the tunnel is 214 m. The location of the fire source is center of the tunnel and the pool fire with heptane is for the fire source. Tests are carried out for the various fire sizes, the height and obstructed/open condition of the fire source. Temperature on the top of the tunnel is measured. Even if the fire size is same, the maximum temperature on the ceiling of the tunnel for the elevated fire source is very larger than the maximum for the ground fire source. As the fire size is lager the maximum temperature on the ceiling is higher. These test results can be very useful for design and guidelines of fire detectors in tunnels.

An Investigation on Fire Resistance Design of Tunnel Structures (주요 터널화재 사고사례 분석 및 국내 터널구조물 내화설계법 고찰)

  • Han, Sang-Hoon;Kim, Min-Suk;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.341-344
    • /
    • 2008
  • By investigating a series of catastrophic tunnel fires, this research aims to evaluate the fire resistance design method as applied to tunnel structures in Korea. It is shown that the current strategy is oriented towards smoke control and ventilation to reduce the loss of life. As structural collapse is not regarded, a general guide is proposed to obtain the fire safety.

  • PDF

The Risk Assessment of Tunnel Fire Through Real Scale Fire Test (실물터널 화재실험을 통한 터널화재 위험도 평가)

  • 최준석;최병일;김명배;한용식;장용재;이유환;황낙순;김필영
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-76
    • /
    • 2002
  • The real scale tunnel fire tests are carried out for the first time in domestic range to assess the extent of risk in the tunnel fire. The tunnel dimension is 465 m in length, 9.2 m in width and 6.5 m in height. Gasoline pools with 0.25 MW∼2.5 MW size and a 1500CC passenger car are used as fire sources. Six jet fans are used to change the flow velocity inside the tunnel. Temperatures at total 86 points in the tunnel are measured to find the temperature distribution and smoke behavior in the real tunnel fire. In the experiment, it is examined that the important parameters to assess the extent of risk in tunnel fire such as back layering of smoke front, descending of smoke layer and the fire size of a real passenger car.

An Examining and Analyzing Study on the Fire Resistance Design for Immersed Tunnels (침매터널 내화설계에 관한 조사 분석적 연구)

  • Lee, Young-Jae;Kim, Heung-Youl;Shin, Hyun-Jun;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.507-512
    • /
    • 2008
  • Recently, Busan-Geoje fixed Link Immersed Tunnel and the Tokyo Port Waterway 2 Submarine Tunnel have been constructing. Furthermore it was mentioned to construct an immersed tunnel from Korea to Japan. As a result, it is expected that the demand to use the immersed tunnel will be increased. However, if a fire occurs in the immersed tunnels, it will damage tunnel elements and not save human lives more seriously than normal tunnels on the ground because of the absence of exits as well as closing structure of the immersed tunnels. In fact, the fire accident in the Eurotunnel which connects between France and the Unite Kingdom through the immersed tunnel had occurred twice in 1996 and 2008, and the inner surface of the tunnel got damaged such as concrete popout and structural damage. As a result, not only economic injury but enormous expense to repair and reinforce the tunnel were derived because of the suspension of traffic after the fire happened. Now, from the examining and analyzing study on the fire resistance of immersed tunnels in developed countries and Busan-Geoje fixed Link Immersed Tunnel, we suggest the establishment method of fire resistance to insure the fire safety of immersed tunnel.

  • PDF

Deterioration Character of tunnel damaged by fire and Fire Proofing Measure (화재에 의한 터널 열화특성 및 내화대책 기술)

  • Seo, Kang-Chun;Yoon, Tae-Gook;Park, Si-Hyun;Cho, Sung-Han;Kim, Eun-Chong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.129-139
    • /
    • 2005
  • In this paper, the behaviors of tunnel damaged by fire, the diagnostic techniques for evaluating tunnel stability are presented. Also two fireproof construction methods are recommended. Three tunnels damaged by fire were analyzed to evaluate the structural stability. From the these analyzed, it is recommended that surface checking, rebound number of concrete by Schmidt Hammer, and carbonation of concrete are essential to evaluate the engineering properties of concrete in tunnel structure damaged by fire. On the basis of case studies of tunnel fire collected by ITA, the change of concrete and steel strengths by fire are explained, and numerical analysis, which was performed on culvert and circle tunnel, shows that distribution of temperature in the tunnel is dependant upon tunnel shape. Two fireproof construction methods using panel and punching metal are introduced to protect the tunnel by fire.

  • PDF

A real scale test on performance of water spray systems in tunnel fire (터널화재시 물분무소화설비의 성능에 대한 실대시험)

  • Park, Kyung-Hwan;So, Soo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • The performance of water spray system installed to reduce risks of tunnel fire is investigated by a real tunnel fire test. In case of A class fire, Pool fire, and car fire, the nozzle of water spray has had a marvelous effect to reduce the temperature of hot smoke. And it is verified to have remarkable cooling effects when there is the air flow in a tunnel. Though this results, water spray system will be able to prevent a fire jump to decrease the air temperature in a tunnel and to protect tunnel facilities by the fire control.

A Study on the Heat and Gas Flow for Fire Simulation in a Tunnel (화재시 터널내 열유동 시뮬레이션 모델 연구)

  • 우경범;김원갑;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.584-591
    • /
    • 2002
  • The objective of the present study is to develop a model to predict heat and gas flow movement by fire in a tunnel. The model includes component models such as turbulence model, combustion model, fire model, jet fan model, etc. It has been validated using the data from Memorial Tunnel Fire Ventilation Test Program. The predictions are in good quantitative agreement with the experimental data in the far-field region of the tunnel. It should be further investigated to develop models for radiation between surfaces, for composite boundary conditions for conduction and convection, and for vigorous turbulent mixing in a tunnel especially for a large size of fire.

A Study of Smoke Movement in Tunnel Fire with Natural Ventilation (자연 배기 터널에서의 연기 거동에 관한 연구)

  • Kim, Sung-Chan;Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.976-982
    • /
    • 2002
  • In this study, smoke movement in tunnel fire with natural ventilation shaft has been investigated with various size of fire source. Gasoline pool fire with different size of diameter - 73mm, 100mm, 125mm and 154mm - was used to describe fire source. Experimental data is obtained with 1/20 model tunnel test and its results are compared with numerical results. The computation were carried out using FDS 1.0 which is a field model of fire-driven now. Temperature profiles between measured and predicted data are compared along ceiling and near the ventilation shaft. Both results are in good agreement with each other. In order to evaluating a safe egress time in tunnel fire, horizontal smoke front velocity was measured in model tunnel fire tests and those are compared with numerical results. According to the presence or absence of natural ventilation shaft, ventilation effect are estimated quantitatively. Finally, this paper shows that computational fluid dynamics(CFD) is applicable to predict fire-induced flow in tunnel.

Evaluation of Fire Safety for Road Tunnels in Port Area based on Fire Safety Guidelines (도로터널 화재안전기준 기반 항만 지역 도로터널 화재 안전성 분석)

  • Ha, Yejin;Jeon, Joonho
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.25-28
    • /
    • 2021
  • Recently, the fire safety of road tunnels has been important issues in South Korea. However, proper fire safety regulations has not made for road tunnels. Due to geographical challenges in South Korea, road tunnels should be constructed to secure stable traffic flows. In the Guidelines for Installing and Managing Disaster Prevention Facilities of Road Tunnels (NFSC 603), main target vehicles are passenger cars. This guidelines cannot support big fires from larger vehicles such as cargo, oil trucks. In this study, fire safety for a road tunnel in port area was analyzed with fire dynamics theory under cargo truck fire scenario. Sujunsan road tunnel in Busan city was chosen as a target tunnel, which links between Busan port and highways to increase cargo shipping. The results show the limitations of present guidelines (NFSC 603) for road tunnel from large fire situations.

Study on the Effective Method of Fire Protection Technology in Railway Tunnel Fire (철도터널 내화성능 기술개발을 위한 내화성능 확보방안에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.86-91
    • /
    • 2010
  • In event of a tunnel fire, all kinds of equipment can be destroyed in high temperature that can exceed $1300^{\circ}C$, fatal structural demage can be caused by spalling of concrete structural elements. To make matters worse, there is a high possibility of the secondary damage which can lead to the collapse of the shear resisting structure. Accordingly, it is time that we developed the technology to counter fires in connection with the fire-resistant design of a tunnel structure. To secure the reliability of the fire-resistance performance of a tunnel structure, it is necessary to assess the fire's behavior on every structural element exposed to the fire as well as to calculate the tunnel fire intensity and the quantity of heat released. In this study, we drew out the fire damage range of each structural element of a tunnel and the minimum thickness of concrete cover for each fire-resistant material through some actual experiments of fire behavior on the structural elements of a tunnel.