DOI QR코드

DOI QR Code

VLSI Design for Folded Wavelet Transform Processor using Multiple Constant Multiplication

MCM과 폴딩 방식을 적용한 웨이블릿 변환 장치의 VLSI 설계

  • 김지원 (전남대학교 전자컴퓨터공학과) ;
  • 손창훈 (전남대학교 전자컴퓨터공학과) ;
  • 김송주 (전남대학교 전자컴퓨터공학과) ;
  • 이배호 (전남대학교 전자컴퓨터공학과) ;
  • 김영민 (전남대학교 전자컴퓨터공학과)
  • Received : 2011.08.29
  • Accepted : 2011.11.01
  • Published : 2012.01.31

Abstract

This paper presents a VLSI design for lifting-based discrete wavelet transform (DWT) 9/7 filter using multiplierless multiple constant multiplication (MCM) architecture. This proposed design is based on the lifting scheme using pattern search for folded architecture. Shift-add operation is adopted to optimize the multiplication process. The conventional serial operations of the lifting data flow can be optimized into parallel ones by employing paralleling and pipelining techniques. This optimized design has simple hardware architecture and requires less computation without performance degradation. Furthermore, hardware utilization reaches 100%, and the number of registers required is significantly reduced. To compare our work with previous methods, we implemented the architecture using Verilog HDL. We also executed simulation based on the logic synthesis using $0.18{\mu}m$ CMOS standard cells. The proposed architecture shows hardware reduction of up to 60.1% and 44.1% respectively at 200 MHz clock compared to previous works. This implementation results indicate that the proposed design performs efficiently in hardware cost, area, and power consumption.

본 논문은 하드웨어 곱셈 연산을 최적화 한 리프팅 기반의 9/7 웨이블릿 필터의 VLSI 구조를 제안한다. 제안하는 구조는 범용 곱셈기를 사용하는 기존의 리프팅 기법과 달리 웨이블릿 계수에 패턴 탐색 기법의 Lef$\grave{e}$vre 알고리즘을 적용하였으며, MCM(Multiple constant multiplication)과 폴딩 방식을 9/7 DWT 필터에 적용하여 효율적으로 하드웨어 설계가 이루어 질수 있도록 제안하였다. 이러한 구조는 하드웨어 자원을 100% 활용하는 이점을 지니며, 이전의 성능에 비해 화질 열화 없이 단순한 하드웨어 구조, 속도, 면적, 전력소모 측면에서 효율적이다. 비교 실험을 위해 Verilog HDL을 통해 구현하였으며, $0.18{\mu}m$ CMOS 공정의 스탠다드 셀을 이용하여 합성하였다. 제안한 구조를 기존의 구조와 200MHz의 합성 타겟 클럭 주파수에서 비교하였을 때 면적, 전력소모 측면에서 60.1%, 44.1% 감소하였으며, 이를 통해 이전의 리프팅 기법에 비해 하드웨어 구현에 보다 최적화된 구조임을 보여준다.

Keywords

References

  1. 손창훈, 박성모, 김영민, "패턴 탐색 기법을 사용한 Multiplierless 리프팅 기반의 웨이블릿 변환의 설계," 멀티미디어학회논문지, 제13권, 제7 호, pp. 943-949, 2010.
  2. J. M. Jou, Y. H. Shiau, and C. C. Liu, "Efficient VLSI Architectures for the Biorthogonal Wavelet Transform by Filter Bank and Lifting Scheme," IEEE Int. Symp. Circuits Syst., Vol.2, pp. 529-532, 2001.
  3. C. T. Huang, P. C. Tseng, and L. G. Chen, "Lifting Based Discrete Wavelet Transform Architecture for JPEG2000," IEEE Int. Symp. Circuits Syst., pp. 445-448, 2001.
  4. B. F. Wu and C. F. Lin, "A High-Performance and Memory-Efficient Pipeline Architecture for the 5/3 and 9/7 Discrete Wavelet Transform of JPEG2000 Codec," IEEE Trans. Circuits Syst. Video Technol., Vol.15, No.12, pp. 1615- 1628, 2005. https://doi.org/10.1109/TCSVT.2005.858610
  5. V. Lefevre, "Multiplication by an Integer Constant," INRIA, Research Report 4192, 2001.
  6. Boullis, N., and Tisserand, A., "Some Optimizations of Hardware Multiplication by Constant Matrices," IEEE Trans. Computer , Vol.54, No.10, pp. 1271-1282, 2005. https://doi.org/10.1109/TC.2005.168
  7. O. Gustafsson, A. Dempster, and L. Wanhammar, "Extended Results for Minimum-Adder Constant Integer Multipliers," IEEE Int. Symp. Circuits Syst., Vol.1, pp. I73-I76, 2002.
  8. Cuangming Shi, Weifeng Liu, Li Zhang, and Fu Li, "An Efficient Folded Architecture for Lifting-Based Discrete Wavelet Transform," IEEE Trans. Circuits Syst., Vol.56, No.4, pp. 290-294, 2009. https://doi.org/10.1109/TCSII.2009.2015393
  9. P. Tummeltshammer, J. C. Hoe., and M. Puschel, "Time-Multiplexed Multiple- Constant Multiplication," IEEE Circuits Syst., Vol.26, No.9, pp. 1551-1563, 2007.
  10. Miodrag Potkonjak, Mani B. S., and Anantha P. C., "Multiple Constant Multiplications: Efficient and Versatile Framework and Algorithms for Exploring Common Subexpression Elimination," IEEE Circuits Syst., Vol.15, No.2, pp. 151-165, 1996.
  11. Levent Aksoy, Eduardo da Costa, Paulo Flores, and Jose Monteiro, "Exact and Approximate Algorithms for the Optimization of Area and Delay in Multiple Constant Multiplications," IEEE Circuits Syst., Vol.27, No.6, pp. 1013-1026, 2008.
  12. Spiral Project: Software/Hardware Generation for DSP Algorithms.[Online] Available: www.spiral.com.