DOI QR코드

DOI QR Code

Low Temperature bonding Technology for Electronic Packaging

150℃이하 저온에서의 미세 접합 기술

  • 김선철 (한양대학교 신소재공학과) ;
  • 김영호 (한양대학교 신소재공학과)
  • Received : 2012.03.08
  • Accepted : 2012.03.22
  • Published : 2012.03.31

Abstract

Recently, flip chip interconnection has been increasingly used in microelectronic assemblies. The common Flip chip interconnection is formed by reflow of the solder bumps. Lead-Tin solders and Tin-based solders are most widely used for the solder bump materials. However, the flip chip interconnection using these solder materials cannot be applied to temperature-sensitive components since solder reflow is performed at relatively high temperature. Therefore the development of low temperature bonding technologies is required in these applications. A few bonding techniques at low temperature of $150^{\circ}C$ or below have been reported. They include the reflow soldering using low melting point solder bumps, the transient liquid phase bonding by inter-diffusion between two solders, and the bonding using low temperature curable adhesive. This paper reviews various low temperature bonding methods.

Keywords

References

  1. J. H. Lau, Flip chip technologies, McGraw-Hill Professional, (1996).
  2. M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics", Materials Science and Engineering R: Reports, 27(5), 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3
  3. E. E. M. Noor, N. M. Sharif, C .K. Yew, T. Ariga, A. B. Ismail and Z. Hussain, "Wettability and strength of In-Bi-Sn leadfree solder alloy on copper substrate", Journal of Alloys and Compounds, 507(1), 290 (2010). https://doi.org/10.1016/j.jallcom.2010.07.182
  4. U. B. Kang and Y. H. Kim, "A new COG technique using low temperature solder bumps for LCD driver IC packaging applications", IEEE Transactions on Components and Packaging Technologies, 27(2), 253 (2004). https://doi.org/10.1109/TCAPT.2004.828585
  5. Y. G. Lee, J. G. Park, C. W. Lee and J. P. Jung, "Electrodeposition of the Sn-58 wt.%Bi layer for low-temperature soldering", Metals and Materials International, 17(1), 117 (2011). https://doi.org/10.1007/s12540-011-0216-y
  6. S. Logothetidis, "Flexible organic electronic devices: Materials, process and applications", Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 152(1-3), 96 (2008). https://doi.org/10.1016/j.mseb.2008.06.009
  7. J. W. Evans, W. Engelmaier, D. Kwon and J. Y. Evans, "A guide to lead-free solders: physical metallurgy and reliability", Springer, 2007.
  8. H. T. Lee, Y. F. Chen, T. F. Hong, K. T. Shih and C. W. Hsu, "Microstructural evolution of Sn-3.5Ag solder with lanthanum addition", pp.617, Beijing, China (2009).
  9. B. R. Flachsbart and K.-C. Hsieh, "Fluxless Sn-Ag solder ball formation for flip-chip application, in: R. Feldman Michael", Y.-C. Lee (Eds.), Society of Photo-Optical Instrumentation Engineers, pp.54, San Jose, CA, USA (1996).
  10. H. Mavoori, S. Vaynman, J. Chin, B. Moran, L.M. Keer and M. E. Fine, "Mechanical behavior of eutectic Sn-Ag and Sn- Zn solders", in: C.R. Sundahl, K.-N. Tu, A.K. Jackson, P. Borgesen (Eds.), Materials Research Society, pp.161, San Francisco, CA, USA (1995).
  11. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, "Creep, stress relaxation, and plastic deformation in Sn- Ag and Sn-Zn eutectic solders", Journal of Electronic Materials, 26(7), 783 (1997). https://doi.org/10.1007/s11664-997-0252-z
  12. R. K. Chinnam, C. Fauteux, J. Neuenschwander and J. Janczak- Rusch, "Evolution of the microstructure of Sn-Ag-Cu solder joints exposed to ultrasonic waves during solidification", Acta Materialia, 59(4), 1474 (2011). https://doi.org/10.1016/j.actamat.2010.11.011
  13. M. Erinc, P.J.G. Schreurs, M.G.D. Geers, "Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder", Mechanics of Materials, 40(10), 780 (2008). https://doi.org/10.1016/j.mechmat.2008.04.005
  14. W. Zhou, Y. Tian and C. Wang, "Microstructure of Sn-Ag- Cu lead-free flip chip interconnects during aging", Proc. 6th International conference on Electronic Packaging Technology (ICEPT 2005), 427 (2005).
  15. Y. H. Tian, C. Q. Wang and W. F. Zhou, "Evolution of microstructure of Sn-Ag-Cu lead-free flip chip solder joints during aging process", Acta Metallurgica Sinica (English Letters), 19(4), 301 (2006). https://doi.org/10.1016/S1006-7191(06)60059-8
  16. K. Suganuma and K. S. Kim, "Sn-Zn low temperature solder", Journal of Materials Science: Materials in Electronics, 18(1-3), 121 (2007).
  17. U. R. Kattner, "Phase diagrams for lead-free solder alloys", JOM, 54(12), 45 (2002).
  18. Z. Mei and J. W. Morris, "Characterization of eutectic Sn-Bi solder joints", Journal of Electronic Materials, 21(6), 599(1992). https://doi.org/10.1007/BF02655427
  19. K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto and K. Niwa, "Solder joint reliability of indium-alloy interconnection", Journal of Electronic Materials, 24(1), 39 (1995). https://doi.org/10.1007/BF02659725
  20. J. H. Choi, K. Y. Lee, S. W. Jun, Y. H. Kim and T. S. Oh, "Contact resistance of the chip-on-glass bonded 48Sn-52In solder joint", Materials Transactions, 46(5), 1042 (2005). https://doi.org/10.2320/matertrans.46.1042
  21. C. Y. Huang and S. W. Chen, "Interfacial reactions in In-Sn/ Ni couples and phase equilibria of the In-Sn-Ni system", Journal of Electronic Materials, 31(2), 152 (2002). https://doi.org/10.1007/s11664-002-0162-z
  22. S. K. Kang and A. K. Sarkhel, "Lead (Pb)-free solders for electronic packaging", Journal of Electronic Materials, 23(8), 701 (1994). https://doi.org/10.1007/BF02651362
  23. M. S. Lee, U. B. Kang and Y. H. Kim, "A new low temperature bonding technique using In and Sn solder bumps", Proc. International conference on Electronic Materials and Packaging (EMAP 2003), 93 (2003).
  24. S. H. Lee and Y. H. Kim, "Shear strength of fluxless solder joints between Sn and in bumps", Key Engineering Materials, 297-300, 857 (2005). https://doi.org/10.4028/www.scientific.net/KEM.297-300.857
  25. S. Choe, W. W. So and C. C. Lee, "Low temperature fluxless bonding technique using In-Sn composite", in, IEEE, pp. 114, Las Vegas, NV, USA (2000).
  26. C. C. Lee and S. Choe, "Fluxless In-Sn bonding process at $140{^{\circ}C}$", Materials Science and Engineering A, 333(1-2), 45 (2002). https://doi.org/10.1016/S0921-5093(01)01815-9
  27. Y. Li and C.P. Wong, "Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications", Materials Science and Engineering R: Reports, 51(1-3), 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  28. I. Mir and D. Kumar, "Recent advances in isotropic conductive adhesives for electronics packaging applications", International Journal of Adhesion and Adhesives, 28(7), 362 (2008). https://doi.org/10.1016/j.ijadhadh.2007.10.004
  29. K. Dai, G. Zhu, L. Lu and G. Dawson, "Easy and Large Scale Synthesis Silver Nanodendrites: Highly Effective Filler for Isotropic Conductive Adhesives", Journal of Materials Engineering and Performance, 21(3), 353 (2011).
  30. H. P. Wu, J. F. Liu, X. J. Wu, M. Y. Ge, Y. W. Wang, G. Q. Zhang and J. Z. Jiang, "High conductivity of isotropic conductive adhesives filled with silver nanowires", International Journal of Adhesion and Adhesives, 26(8), 617 (2006). https://doi.org/10.1016/j.ijadhadh.2005.10.001
  31. H. H. Lee, K. S. Chou and Z. W. Shih, "Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives", International Journal of Adhesion and Adhesives, 25(5), 437 (2005). https://doi.org/10.1016/j.ijadhadh.2004.11.008
  32. H. P. Wu, X. J. Wu, M. Y. Ge, G. Q. Zhang, Y. W. Wang and J. Jiang, "Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes", Composites Science and Technology, 67(6), 1182 (2007). https://doi.org/10.1016/j.compscitech.2006.05.010
  33. S. K. Kang, R. S. Rai and S. Purushothaman, "Development of high conductivity lead (Pb)-free conducting adhesives", IEEE Transactions on Components Packaging and Manufacturing Technology Part A, 21(1), 18 (1998). https://doi.org/10.1109/95.679027
  34. L. Ye, Z. Lai, J. Liu and A. Tholen, "Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives", IEEE Transactions on Electronics Packaging Manufacturing, 22(4), 299 (1999). https://doi.org/10.1109/6104.816098
  35. Y. C. Chan and D.Y. Luk, "Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly I. Different bonding temperature", Microelectronics Reliability, 42(8), 1185 (2002). https://doi.org/10.1016/S0026-2714(02)00079-3
  36. M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lu and A. Sharif, "The effect of curing on the performance of ACF bonded chip-onflex assemblies after thermal ageing", Soldering and Surface Mount Technology, 17(2), 40 (2005).
  37. M. A. Uddin, M. O. Alam, Y. C. Chan and H. P. Chan, "Adhesion strength and contact resistance of flip chip on flex packages - Effect of curing degree of anisotropic conductive film", Microelectronics Reliability, 44(3), 505 (2004). https://doi.org/10.1016/S0026-2714(03)00185-9
  38. K. Lee, H. J. Kim and K. W. Paik, "Room temperature ACF bonding process using ultrasonic vibration for chip-on-board and flex-on-board applications", Proc. International Conference on Electronic Materials and Packaging (EMAP 2007), 1 (2007).
  39. K. Lee, S. Oh, I. J. Saarinen, L. Pykari and K. W. Paik, "Highspeed flex-on-board assembly method using anisotropic conductive films (ACFs) combined with room temperature ultrasonic (US) bonding for high-density module interconnection in mobile phones", Electronic Components and Technology Conference (ECTC), pp.530, Lake Buena Vista, FL, U.S.A (2011).
  40. C. M. Lin, W. J. Chang and T. H. Fang, "Analysis of new anisotropic conductive film (ACF)", IEEE Transactions on Device and Materials Reliability, 5(4), 694 (2005). https://doi.org/10.1109/TDMR.2005.860557
  41. M. H. Hong, S.-C. Kim and Y.-H. Kim, "Ultra-fine pitch chipon- glass (COG) bonding with metal bumps having insulating layer in the side walls using anisotropic conductive film (ACF)", Current Applied Physics, 12(3), 612 (2012). https://doi.org/10.1016/j.cap.2011.07.016
  42. M. J. Yim, J. S. Hwang, W. Kwon, K. W. Jang and K. W. Paik, "Highly reliable non-conductive adhesives for flip chip CSP applications", IEEE Transactions on Electronics Packaging Manufacturing, 26(2), 150 (2003). https://doi.org/10.1109/TEPM.2003.817715
  43. L. K. Teh, E. Anto, C. C. Wong, S. G. Mhaisalkar, E. H. Wong, P. S. Teo and Z. Chen, "Development and reliability of non-conductive adhesive flip-chip packages", Thin Solid Films, 462-463(SPEC. ISS.), 446 (2004). https://doi.org/10.1016/j.tsf.2004.05.077
  44. L. K. Teh, C C. Wong, S. Mhaisalkar, K. Ong, P. S. Teo and E. H. Wong, "Characterization of Nonconductive Adhesives for Flip-Chip Interconnection", Journal of Electronic Materials, 33(4), 271 (2004). https://doi.org/10.1007/s11664-004-0132-8
  45. Y. C. Chan, S. C. Tan, N. S. M. Lui and C. W. Tan, "Electrical characterization of NCP- and NCF-bonded fine-pitch flipchip- on-flexible packages", IEEE Transactions on Advanced Packaging, 30(1), 142 (2007). https://doi.org/10.1109/TADVP.2006.890215
  46. H. C. Cheng, C. L. Ho, K. N. Chiang and S. M. Chang, "Process- dependent contact characteristics of NCA assemblies", IEEE Transactions on Components and Packaging Technologies, 27(2), 398 (2004). https://doi.org/10.1109/TCAPT.2004.828552
  47. B. Y. Kim, Z. Chen and Y. H. Kim, "Chip-on-glass bonding using sn bump and non-conductive adhesive for LCD application", Molecular Crystals and Liquid Crystals, 458(1), 199 (2006). https://doi.org/10.1080/15421400600932363
  48. K. M. Harr, Y. M. Kim, D. H. Lim, Y. H. Kim, J. G. Kim and S. Yi, "A new COF bonding technique using Sn bumps and a non-conductive adhesive (NCA) for image sensor packaging", Electronic Components and Technology Conference (ECTC), pp.1475, San Diego, CA (2009).
  49. B. G. Kim, S. M. Lee, Y. S. Jo, S. C. Kim, K. M. Harr and Y. H. Kim, "Highly reliable, fine pitch chip on glass (COG) joints fabricated using Sn/Cu bumps and non-conductive adhesives", Microelectronics Reliability, 51(4), 851 (2011). https://doi.org/10.1016/j.microrel.2010.11.003
  50. B. G. Kim, S. M. Lee and Y. H. Kim, "The reliability of 30 ${\mu}m$ pitch COG joints fabricated using Sn/Cu bumps and non-conductive adhesive", Proc. International Conference on Electronic Materials and Packaging (EMAP 2007), 1 (2007).
  51. Z. G. Chen and Y. H. Kim, "A new COP bonding using nonconductive adhesives for LCDs driver IC packaging", Displays, 27(3), 130 (2006). https://doi.org/10.1016/j.displa.2006.04.002
  52. K. Tanida, M. Umemoto, Y. Tomita, M. Tago, R. Kajiwara, Y. Akiyama and K. Takahashi, "Au bump interconnection with ultrasonic flip-chip bonding in 20 ${\mu}m$ pitch", Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 42(4B), 2198 (2003). https://doi.org/10.1143/JJAP.42.2198
  53. A. Shigetou, T. Itoh and T. Suga, "Bumpless interconnect of ulrafine Cu electrodes by surface activated bonding (SAB) method", Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 89(12), 34 (2006).
  54. T. H. Kim, M. M. R. Howlader, T. Itoh and T. Suga, "Room temperature Cu-Cu direct bonding using surface activated bonding method", Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 21(2), 449 (2003). https://doi.org/10.1116/1.1537716
  55. T. Suga, "Feasibility of surface activated bonding for ultrafine pitch interconnection - a new concept of bump-less direct bonding for system level packaging", Electronic Components and Technology Conference (ECTC), pp.702, Las Vegas, NV, USA (2000).

Cited by

  1. Review on the Integration of Microelectronics for E-Textile vol.14, pp.17, 2012, https://doi.org/10.3390/ma14175113