시간 상관 채널에서 동 이득 차분 선부호화 기법

Equal Gain Differential Precoding Technique for Temporally Correlated Channels

  • 이신 (충북대학교 정보통신공학과) ;
  • 김상구 (충북대학교 정보통신공학과) ;
  • 김영주 (충북대학교 정보통신공학과)
  • Li, Xun (School of Information and Commun. Engineering, Chungbuk National University) ;
  • Kim, Sang-Gu (School of Information and Commun. Engineering, Chungbuk National University) ;
  • Kim, Young-Ju (School of Information and Commun. Engineering, Chungbuk National University)
  • 투고 : 2011.10.31
  • 심사 : 2012.01.17
  • 발행 : 2012.01.25

초록

본 논문에서는 채널의 시간 상관을 이용하는 새로운 동 이득 차분 선부호화 기법을 제안한다. 기존의 차분 선부호화 기법은 채널의 전체 영역을 양자화하는 것이 아니라 인접 채널의 변화량에 해당하는 채널의 일부 영역만을 양자화 함으로 코드북이 증가하는 효과가 있어 시스템 용량을 증가시킨다. 그러나 기존의 기법은 동 이득 전송을 하지 않음으로 peak-to-average 전력비 (PAPR) 특성이 저하되는 문제가 있다. 본 논문에서는 동 이득 전송이 가능한 차분 코드북 설계 방법을 제안하고, 동 이득전송의 성능을 분석한다. Monte-Carlo 시뮬레이션에 의해 제안하는 기법은 동일한 시스템 용량을 얻기 위해 같은 피드백 비트수에서 기존의 LTE 선부호화 기법보다 1dB 성능이 향상되면서, 우수한 PAPR 특성을 보인다.

In this paper, we propose a novel equal-gain differential precoding scheme utilizing temporal correlation of channels. The conventional differential precoding schemes only quantize a part of channel space not the whole channel space, so that it virtually increases codebook size which enhances the system capacity. But the conventional differential schemes increase peak-to-average power ratio (PAPR) without preserving equal-gain transmission. This paper proposes the design method of equal-gain differential precoding scheme and analyzes the performances of the proposed equal-gain precoding scheme. Monte-Carlo simulations verify that the proposed scheme has an advantage of 1dB to obtain the same system capacity with the same amount of feedback information compared with the conventional LTE schemes, with showing very low PAPR property.

키워드

참고문헌

  1. 3rd Generation Partnership Project, 3GPP TR 36.913 - Requirements for further advancedments for E-UTRA (LTE-Advanced), Nov. 2007.
  2. 3rd Generation Partnership Project, 3GPP TS 36.211 - Technical Specification Group Radio Access Network; Evolved Unversal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), Mar. 2009.
  3. 3rd Generation Partnership Project, 3GPP TS 36.201 - LTE Physical Layer - General Description (Release 8)," 3GPP, Tech. Rep. TS 36.201, V8.1.0, Nov. 2007.
  4. T. K. Lo, "Maximum ratio transmission," IEEE Trans. Comm., vol. 47, no. 10, pp. 1458-1461, Oct. 1999. https://doi.org/10.1109/26.795811
  5. A. Paulraj, R. Nabar, and D. Gore, Introduction to space time wireless communications, Cambridge university press, pp. 95-96, 2003.
  6. D. J. Love, R. W. Heath and T. Strohmer, "Grassmannian beamforming for multiple-input multiple- output wireless systems", IEEE Trans. on Inform. Theory, vol. 49, no. 10, pp.2735-2747, Oct. 2003. https://doi.org/10.1109/TIT.2003.817466
  7. I. Telatar, "Capacity of multi-antenna gaussian channels," AT&T Bell Laboratories internal Technical Memorandum, 1995.
  8. D. J. Love and R. W. Heath, "Equal gain transmission in multiple-input multiple-output wireless systems," IEEE Trans. Comm., vol. 51, no. 7, July 2003.
  9. 조용수 김재권 and 양원영 MIMO-OFDM 무선통신과 MATLAB, 홍릉과학출판사 2008.
  10. H. G. Myung and D. J. Goodman, Single Carrier FDMA, Wiley, 2008.
  11. 이상근 조봉열 and 여운영 쉽게 설명한 3G/4G 이동통신시스템(개정판), 홍릉과학출판사 2009.
  12. IEEE802.16e, "Air interface for broadband wireless access systems," June 2008.
  13. WiMAX Forum, "Mobile WiMAX - Part I: A technical overview and performance evaluation," http://www.wimaxforum.org/sites/wimaxforum.or g/files/document_library/mobile_wimax_part1_overview_and_performance.pdf, Aug. 2006.
  14. "Enhancement for LTE-Advanced," Texas Instruments, R1-081979, May 2008.
  15. G. Golub and C. Loan, Matrix Computation (3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996.
  16. Gilberto Berardinelli, Troels B.Srensen, Preben Mogensen, and Kari Pajukoski, "SVD-Based vs. Release 8 Codebooks for Single User MIMO LTE-A Uplink," VTC 2010-Spring IEEE 71st, Taipei, Taiwan, June 2010.
  17. B.M. Hochwald, T.L. Marzetta, T.J. Richardson, W. Sweldens, and R. Urbanke, "Systematic design of unitary space-time constellations," IEEE Trans. Info. Theory, vol. 46, pp. 1962-1973, Sep. 2000. https://doi.org/10.1109/18.868472
  18. J. H. Conway, R.H. Hardin, and N.J.A. Sloane, "Packing lines, planes, etc.: packings in Grassmannian spaces," Experimental Math., vol. 5, pp.139-159, 1996. https://doi.org/10.1080/10586458.1996.10504585
  19. T. Strohmer and R.W. Heath Jr, "Grassmannian frames with applications to coding and communications," Appl. Comput. Harmon. Anal., vol. 14, pp. 257-257, May 2003. https://doi.org/10.1016/S1063-5203(03)00023-X
  20. S. P. Lloyd. "Least squares quantization in PCM," IEEE Trans Inform. Theory. vol. IT-28. Mar. 1982.
  21. Noe Yoon Park, Young Ju Kim, Xun Li, and Kwan Seob Lee, "Fast Codebook Index Searching Algorithm for a Quantized EGT in MIMO Systems," IEEE VTC Spring 2009. IEEE 69th, Apr. 2009.
  22. S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," IEEE Wireless Comm., Apr. 2005.
  23. "Uplink SU-MIMO for E-UTRA," Texas Instrument, R1-082496, June 2008.
  24. C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSWOFDM-Signal for a Digital Sound Broadcasting System," in Proceedings of the Second European Conference on Satellite Comm., Liege, Belgium, Oct. 1991.