DOI QR코드

DOI QR Code

Deconvolution of UV Spectrum for Selective Measurement of $ClO_2$ Concentration Quantitatively in Solution Containing Various Chlorine Species

다양한 염소 종이 함유된 수용액에서 자외선 흡수 파장 분해법을 이용한 이산화염소 선별 정량 분석

  • Byun, Youngchul (Environment Research Department, Research Institute of Industrial Science & Technology (RIST)) ;
  • Kim, Jaehoon (Environment Research Department, Research Institute of Industrial Science & Technology (RIST)) ;
  • Jang, Yumi (Environment Research Department, Research Institute of Industrial Science & Technology (RIST)) ;
  • Lee, Kiman (Environment Research Department, Research Institute of Industrial Science & Technology (RIST)) ;
  • Lee, Jae Myeong (Environment Research Department, Research Institute of Industrial Science & Technology (RIST)) ;
  • Shin, Dong Nam (Environment Research Department, Research Institute of Industrial Science & Technology (RIST))
  • 변영철 (포항산업과학연구원 환경연구실) ;
  • 김재훈 (포항산업과학연구원 환경연구실) ;
  • 장유미 (포항산업과학연구원 환경연구실) ;
  • 이기만 (포항산업과학연구원 환경연구실) ;
  • 이재명 (포항산업과학연구원 환경연구실) ;
  • 신동남 (포항산업과학연구원 환경연구실)
  • Received : 2012.04.15
  • Accepted : 2012.11.20
  • Published : 2012.11.30

Abstract

An ultraviolet (UV) absorption method has a difficulty to analyze $ClO_{2(aq)}$ in solutions containing various chlorine species because UV spectrum of $ClO_{2(aq)}$ overlaps with other chlorine-containing species. This study has proposed the deconvolution method of UV spectrum to analyze $ClO_{2(aq)}$ concentration quantitatively in solution containing various chlorine species. We compared results obtained from UV deconvolution method with titration method. Good agreement of $ClO_{2(aq)}$ concentration between them has been shown in about 10%. This result informs us that the deconvolution method of UV spectrum could be a feasible for the analysis of $ClO_{2(aq)}$ in solution containing various chlorine species.

$ClO_{2(aq)}$ 분석 방법 중 하나인 UV 흡수법은 여러 염소종이 함유된 용액에서는 흡수 파장 겹침 현상으로 분석에 어려움이 있다. 이러한 문제를 극복하고자 UV 파장 분해법을 이용한 다양한 염소종이 함유된 용액의 $ClO_{2(aq)}$ 농도 정량법을 제안하였다. UV 파장 분해법을 이용한 $ClO_{2(aq)}$ 농도 값은 적정법을 이용한 $ClO_{2(aq)}$ 농도 값과 10%내에서 일치하였다. 따라서 다양한 염소 종들이 포함된 시료에서도 제안된 UV 파장 분해법을 적용한다면 $ClO_{2(aq)}$의 선택적 분석이 가능하다는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지 기술평가원(KETEP)

References

  1. Snoeyink, V. L. and Jenkins, D., Water chemistry, John Wiley & Sons, Inc., (1980).
  2. 최새나, 곽선영, 표희수, 김정화, 문명희, "기체크로마토그래프/질량분석기에 의한 물시료 중 염소소독부산물 및 할로아세트산의 분석 및 위해성 평가," 대한환경공학회지, 29(6), 630-639(2007).
  3. 손희종, 황영도, 노재순, 빈재훈, "합성유기질소 성분에서의 염소 소독부산물 생성 특성," 대한환경공학회지, 32(5), 523- 530(2010).
  4. Bergmann, H. and Koparal, S., "The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection," Electrochim. Acta, 50, 5218-5225(2005). https://doi.org/10.1016/j.electacta.2005.01.061
  5. 이송희, 이병두, 김진근, 석관수, 이정택, "기존 정수장 이산화염소 시범도입 사례연구," 대한환경공학회지, 27(1), 115-119(2005).
  6. 정승우, 오현제, 박훈수, 강준원, 최승일, "이산화염소 반응특성과 이온크로마토그래피를 이용한 이산화염소체 분석법," 대한환경공학회지, 17(6), 543-552(1995).
  7. Gates, D., The chlorine dioxide handbook, Denver, American Water Works Association, (1997).
  8. Hoehn, R. C., Chapter 14 Chlorine dioxide in White's handbook of chlorination and alternative disinfectants, John Wiley & Sons, Inc. (2010).
  9. Huber, M. M., Korhonen, S., Ternes, T. A. and Gunten, U., "Oxidation of pharmaceuticals during water treatment with chlorine dioxide," Water Res., 39, 3607-3617(2005). https://doi.org/10.1016/j.watres.2005.05.040
  10. 이윤진, 이환, 남상호, "정수처리에 있어서 이산화염소 사용시 Chlorite 및 Chlorate의 생성인자에 관한 고찰," 대한환경공학회지, 23(1), 153-161(2001).
  11. Jin, R., Hu, S., Zhang, Y. and Bo, T., "Concentration-dependence of the explosion characteristics of chlorine dioxide gas," J. Hazard. Mater., 166, 842-847(2009). https://doi.org/10.1016/j.jhazmat.2008.11.124
  12. Du, J., Fu, M., Li, M., Xia, W., "Effects of chlorine dioxide gas on postharvest physiology and storage quality of green bell pepper (Capsicum frutescens L. var. Longrum)," Agr. Sci. China, 6, 214-219(2007). https://doi.org/10.1016/S1671-2927(07)60037-6
  13. Deborde, M. and Gunten, U., "Reactions of chlorine with inorganic and organic compounds during water treatment- Kinetics and mechanisms: A critical review," Water Res., 42, 13-51(2008). https://doi.org/10.1016/j.watres.2007.07.025
  14. Byun, Y., Ko, K. B., Cho, M., Namkung, W., Lee, K., Shin, D. N. and Koh, D. J., "Reaction pathways of NO oxidation by sodium chlorite powder," Environ. Sci. Technol., 43, 5054- 5059(2009). https://doi.org/10.1021/es900152b
  15. Byun, Y., Cho, M., Namkung, W., Lee, K., Koh, D. J. and Shin, D. N., "Insight into the unique oxidation chemistry of elemental mercury by chlorine-containing species: Experiment and simulation," Environ. Sci. Technol., 44, 1624-1629(2010). https://doi.org/10.1021/es902358u
  16. Du, J., Fu, M., Li, M. and Wei, X., "Effects of chlorine dioxide gas on postharvest physiology and storage quality of green bell pepper," Agr. Sci. China, 6, 214-219(2007). https://doi.org/10.1016/S1671-2927(07)60037-6
  17. Deshwal, B. R. and Lee, H. -K., "Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate," J. Hazard. Mater., B108, 173-182 (2004).
  18. Standard Methods Committee, 4500-Cl (Residual), 4.36-4.48 (1993).
  19. 윤제용, Jensen, J. N., "전류적정법에 의한 총 잔류염소 측정시 부(負)의 방해 작용에 관한 연구," 대한환경공학회지, 18(11), 1293-1302(1996).
  20. USEPA, Determination of inorganic anions in drinking water by ion chromatography, Method 300.1 (1999).
  21. Dietrich, A. M., Ledder, T. D., Gallagher, D. L., Grabeel, M. N. and Hoehn, R. C., "Determination of chlorite and chlorate in chlorinated and chloraminated drinking water by flow injection analysis and ion chromatography," Anal. Chem., 64, 496-502(1992). https://doi.org/10.1021/ac00029a009
  22. Hong, C. C. and Rapson, W. H., "Analyses of chlorine dioxide, chlorous acid, chlorite, chlorate, and chloride in composite mixtures," Can. J. Chem., 46, 2061-2064(1968). https://doi.org/10.1139/v68-336
  23. Ikeda Y., Tang, T. and Gordon, G., "Iodometric method for determination of trace chlorate ion," Anal. Chem., 56, 71-73 (1984). https://doi.org/10.1021/ac00265a019
  24. Willson, V. A., "Determination of available chlorine in hypochlorite solutions by direct titration with sodium thiosulfate," Ind. Eng. Chem. Anal. Ed., 7, 44-45(1935). https://doi.org/10.1021/ac50093a022
  25. Adam, L. C. and Gordon, G., "Direct and sequential potentimetric determination of hypochlorite, chlorite, and chlorate ions when hypochlorite ion is present in large excess," Anal. Chem., 67, 535-540(1995). https://doi.org/10.1021/ac00099a009
  26. Paviet-Hartmann, P., Dziewinski, J., Hartmann, T., Marczak, S., Lu, N., Walthall, M., Rafalski, A. and Zagorski, Z. P., "Spectroscopic investigation of the formation of radiolysis by products by 13/9 Mev linear accelerator of electrons in salt solutions," WM'02 conference, Tucson, Arizona, 1-10(2002).
  27. Philippi, M., Santos, H. S., Martins, A. O., Azevedo, C. M. N. and Pires, M., "Alternative spectrophotometric method for standardization of chlorite aqueous solutions," Anal. Chim. Acta, 585, 361-365(2007). https://doi.org/10.1016/j.aca.2006.12.053
  28. Post, M. A. and Moore, W. A., "The determination of chlorine dioxide in treated surface waters," Anal. Chem., 31, 1872-1874(1959). https://doi.org/10.1021/ac60155a060
  29. Chen, T., "Spectrophotometric determination of microquantities of chlorate, chlorite, hypochlorite, and chloride in perchlorate," Anal. Chem., 39, 804-813(1967). https://doi.org/10.1021/ac60251a023