DOI QR코드

DOI QR Code

다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite

  • 투고 : 2012.02.02
  • 심사 : 2012.02.13
  • 발행 : 2012.03.27

초록

We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

키워드

참고문헌

  1. B. E. Conway, Electrochemical Supercapacitors, p. 11-31, Kluwer, New York (1999).
  2. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, J. Power Sourc., 47, 89 (1994). https://doi.org/10.1016/0378-7753(94)80053-7
  3. G. Z. Chen, M. S. P. Shaffer, D. Coleby, G. Dixon, W. Zhou, D. J. Fray and A. H. Windle, Adv. Mater., 12, 522 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S
  4. K. -W. Nam, W. -S. Yoon and K. -B. Kim, Electrochim. Acta, 47, 3201 (2002). https://doi.org/10.1016/S0013-4686(02)00240-2
  5. K. R. Prasad and N. Miura, Appl. Phys. Lett., 85, 4199 (2004). https://doi.org/10.1063/1.1814816
  6. S. R. Sivakkumar, J. M. Ko, D. Y. Kim, B. C. Kim and G. G. Wallace, Electrochim. Acta, 52, 7377 (2007). https://doi.org/10.1016/j.electacta.2007.06.023
  7. R. Y. Song, J. H. Park, S. R. Sivakkumar, S. H. Kim, J. M. Ko, D. -Y. Park, S. M. Jo and D. Y. Kim, J. Power Sourc., 166, 297 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.093
  8. K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, Adv. Funct. Mater., 11, 387 (2001). https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  9. M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray and A. H. Windle, Adv. Mater., 14, 382 (2002). https://doi.org/10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
  10. K. -H. Chang and C. -C. Hu, Appl. Phys. Lett., 88, 193102 (2006). https://doi.org/10.1063/1.2200154
  11. C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 146, 3155 (1999). https://doi.org/10.1149/1.1392448
  12. C. -C. Hu, W. -C. Chen and K. -H. Chang, J. Electrochem. Soc., 151, A281 (2004). https://doi.org/10.1149/1.1639020
  13. C. -C. Hu, K. -H. Chang, M. -C. Lin and Y. -T. Wu, Nano Lett., 6, 2690 (2006). https://doi.org/10.1021/nl061576a
  14. X. Tang, Z. -H. Liu, C. Zhang, Z. Yang and Z.Wang, J. Power Sourc., 193, 939 (2009).
  15. H. S. Min, S. Kim, D. S. Cheong, W. K. Choi, Y. J. Oh and J. K. Lee, Kor. J. Mater. Res., 19(10), 544 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.10.544
  16. W. J. Kim and S. M. Yang, Chem. Mater., 12, 3227 (2000). https://doi.org/10.1021/cm990652q
  17. J. M. Ko and K. M. Kim, Korean. Chem. Eng. Res., 47, 11 (2009) (in Korean).