• Title/Summary/Keyword: $Co_3O_4/RuO_2$ composite

Search Result 3, Processing Time 0.018 seconds

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite (다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성)

  • Lim, Hye-Min;Ryu, Kwang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

Cobalt Vanadium Heterointerface Modulated Co2P/VP Heterostructure Electrocatalyst for Robust Water Splitting

  • Purna Prasad Dhakal;Ganesh Bhandari;Hoang Tuan Nguyen;Duy Thanh Tran;Nam Hoon Kim;Joong Hee Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.296-300
    • /
    • 2024
  • The rational synthesis of efficient transitional metal phosphides (TMPs) could revolutionize green hydrogen production via water splitting. Hydrogen, with the highest energy density among fuels, stands out as an excellent alternative to address environmental issues and ensure sustainable future energy generation. However, the limited availability of state-of-the-art electrocatalysts like Pt/C and RuO2, used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, necessitates the development of cost-effective and non-noble electrocatalysts for green hydrogen production. In this context, we present a novel heterointerface-modulated heterostructure design comprising ultrathin nanosheets of a 3D Co2P/VP heterostructure on a conductive nickel foam substrate. This heterostructure demonstrates remarkably low overpotentials of 96 mV for HER and 237 mV for OER at 10 mA cm-2. The material's robust electrochemical kinetics are further evidenced by low Tafel slopes of 68.28 mV dec-1 and 116.54 mV dec-1, respectively.