DOI QR코드

DOI QR Code

단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계

Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack

  • 투고 : 2011.09.22
  • 심사 : 2011.10.27
  • 발행 : 2012.01.31

초록

본 논문은 스칼라 곱셈, Menezes-Vanstone 타원곡선 암호 및 복호 알고리즘, 점-덧셈, 점-2배 연산, 유한체상 곱셈, 나눗셈 등의 7가지 동작을 수행하는 GF($2^{191}$) 타원곡선 암호프로세서를 하드웨어로 설계하였다. 단순 전력 분석에 대비하기 위해 타원곡선 암호프로세서는 주된 반복 동작이 키 값에 무관하게 동일한 연산 동작으로 구성되는 몽고메리 스칼라 곱셈 기법을 사용하며, GF($2^m$)의 유한체에서 각각 1, (m/8), (m-1)개의 고정된 사이클에 완료되는 GF-ALU, GF-MUL, GF-DIV 연산장치가 병렬적으로 수행되는 동작 특성을 갖는다. 설계된 프로세서는 0.35um CMOS 공정에서 약 68,000개의 게이트로 구성되며, 시뮬레이션을 통한 최악 지연시간은 7.8 ns로 약 125 MHz의 동작속도를 갖는다. 설계된 프로세서는 320 kps의 암호율, 640 kbps을 복호율 갖고 7개의 유한체 연산을 지원하므로 다양한 암호와 통신 분야에 적용할 수 있다.

In this paper hardware implementation of GF($2^{191}$) elliptic curve cryptographic coprocessor which supports 7 operations such as scalar multiplication(kP), Menezes-Vanstone(MV) elliptic curve cipher/decipher algorithms, point addition(P+Q), point doubling(2P), finite-field multiplication/division is described. To meet structure resistant against simple power analysis, the ECC processor adopts the Montgomery scalar multiplication scheme which main loop operation consists of the key-independent operations. It has operational characteristics that arithmetic units, such GF_ALU, GF_MUL, and GF_DIV, which have 1, (m/8), and (m-1) fixed operation cycles in GF($2^m$), respectively, can be executed in parallel. The processor has about 68,000 gates and its simulated worst case delay time is about 7.8 ns under 0.35um CMOS technology. Because it has about 320 kbps cipher and 640 kbps rate and supports 7 finite-field operations, it can be efficiently applied to the various cryptographic and communication applications.

키워드

참고문헌

  1. Thomas S. Messerges, "Power Analysis Attacks and Countermeasures for Cryptographic Algorithms", Ph.D Thesis, University of Illinois at Chicago, 2000.
  2. 박 영호, Side Channel Attack을 고려한 알고리즘 연구, ETRI 최종 연구보고서, 2003. 11.
  3. A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.
  4. P. Montgomery, "Speeding the Pollard and elliptic curve methods of factorization", Mathematics of Computation, vol 48, pp.243-264, 1987. https://doi.org/10.1090/S0025-5718-1987-0866113-7
  5. J. Lopez and R. Dahab, "Fast Multiplication on Elliptic Curves over GF($2^{m}$) without Precomputation", CHES '99, LNCS 1717, pp.316-327, 1999.
  6. American Bankers Association, "Working Draft: American National Standard X9.62-1998 Public Key Cryptography for the Financial Services Industry," September 20, 1998.
  7. Edoardo D. Mastrovito, VLSI Architectures for Computations in Galois Fields, Linkoping University, Ph.D Thesis, 1991.
  8. H. Brunner, A. Curiger, and M. Hosfstetter, "On Computing Multiplicative Inverses in GF($2^{m}$)," IEEE Transaction on Computers, Vol. 42, No. 8, pp.1010-1015, Aug., 1993. https://doi.org/10.1109/12.238496
  9. J. Guo, C. Wang, "Systolic Array Implementation of Euclid's Algorithm for Inversion and Division in GF($2^{m}$)," IEEE Transaction on Computers, Vol.47, No.10, pp.1161-1167, Oct., 1998. https://doi.org/10.1109/12.729800
  10. Samsung Electronics, STD90 /MDL90 0.35um 3.3V CMOS standard cell library for pure logic/ MDL Products, 2000.
  11. G. B. Agnew, R. C. Mullin and S. A. Vanstone, "Implementation of Cryptosystems over GF(2155)," IEEE Journal of Selected Area in Communication, Vol. 11, No.5, pp.804-813, 1993. https://doi.org/10.1109/49.223883
  12. 김의석, 정용진, "새로운 유한체 나눗셈기를 이용한 타원 곡선 암호(ECC) 스칼라 곱셈기의 설계," 한국 통신 학회 논문지, Vol.29, No.5C, pp.726-736, 2004. 5.