DOI QR코드

DOI QR Code

Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane

  • Boo, Bong-Hyun (Department of Chemistry, Chungnam National University) ;
  • Lee, Jae-Kwang (Department of Chemistry, Chungnam National University)
  • Received : 2011.12.10
  • Accepted : 2012.01.19
  • Published : 2012.03.20

Abstract

We investigated fluorescence and fluorescence excitation of diphenylsilane (DPS) in a solution and molecular beams in combination with the aid of the DFT method. When the molecule was photoexcited at 250 nm in a cyclohexane solution, normal and excimer fluorescences were observed in the ranges of 260-320 and 330-450 nm, respectively. The fluorescence excitation spectrum indicates that the channel leading to the intramolecular excimer formation is not efficient in comparison with the normal fluorescence. Vibrationally resolved fluorescence excitation spectra were measured for the DPS molecules cooled in pulsed supersonic expansion of He in the range 262.2-271.7 nm, in which we can see several electronic excitation spectra exhibiting the electronic band origins. We found that the simulated absorption spectrum based on the time-dependent densityfunctional theory calculations accords well with the absorption spectrum.

Keywords

References

  1. Chakraborty, T.; Lim, E. C. J. Phys. Chem. 1995, 99, 17505. https://doi.org/10.1021/j100049a007
  2. East, A. L. L.; Cid-Aguero, P.; Liu, H.; Judge, R. H.; Lim, E. C. J. Phys. Chem. A 2000, 104, 1456. https://doi.org/10.1021/jp993647i
  3. Lee, J. K.; Judge, R. H.; Boo, B. H.; Lim, E. C. J. Chem. Phys. 2002, 116, 8809. https://doi.org/10.1063/1.1471237
  4. Chung, Y. B.; Jang, D.-J.; Kim, D.; Lee, M.; Kim, H. S.; Boo, B. H. Chem. Phys. Lett. 1991, 176, 453. https://doi.org/10.1016/0009-2614(91)90236-3
  5. Boo, B. H.; Kang, D. E. J. Phys. Chem. A 2005, 109, 4280. https://doi.org/10.1021/jp0406621
  6. Kang, H. K.; Kang, D. E.; Boo, B. H.; Yoo, S. J.; Lee, J. K.; Lim, E. C. J. Phys. Chem. A 2005, 109, 6799. https://doi.org/10.1021/jp058019h
  7. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454. https://doi.org/10.1016/0009-2614(96)00440-X
  8. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439. https://doi.org/10.1063/1.475855
  9. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
  10. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  11. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  12. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  13. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  14. Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  15. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. https://doi.org/10.1063/1.462569
  16. Wilson, A. K.; van Mourik, T.; Dunning, T. H., Jr. J. Mol. Struct. (Theochem) 1996, 388, 339. https://doi.org/10.1016/S0166-1280(96)80048-0
  17. Davidson, E. R. Chem. Phys. Lett. 1996, 260, 514. https://doi.org/10.1016/0009-2614(96)00917-7
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D. 01; Gaussian, Inc.; Wallingford CT, 2004.
  19. Boo, B. H. J. Korean Phys. Soc. 2011, 59, 3205. https://doi.org/10.3938/jkps.59.3205
  20. Boo, B. H.; Ryu, S. Y.; Yoon, M.; Koh, S. G.; Park, K. L. J. Phys. Chem. A 2010, 114, 8969. https://doi.org/10.1021/jp1013175
  21. Smith, T. C.; Evans, C. J.; Clouthier, D. J. J. Chem. Phys. 2002, 117, 6446. https://doi.org/10.1063/1.1506683
  22. Boo, B. H.; Cho, H.; Lee, J. K.; Lim, E. C. J. Korean Phys. Soc. 2010, 56, 315. https://doi.org/10.3938/jkps.56.315
  23. Boo, B. H.; Kang, D. E.; Kang, H. K.; Kwon, M.; Yoo, S. J.; Lee, J. K.; Lim, E. C. Chem. Phys. Lett. 2006, 417, 83. https://doi.org/10.1016/j.cplett.2005.10.004