DOI QR코드

DOI QR Code

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Received : 2011.11.30
  • Accepted : 2012.01.11
  • Published : 2012.03.20

Abstract

Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

Keywords

References

  1. Witz, G.; Rechendorff, K.; Adamcik, J.; Dietler, G. Phys. Rev. Lett. 2008, 101, 148103. https://doi.org/10.1103/PhysRevLett.101.148103
  2. Witz, G.; Rechendorff, K.; Adamcik, J.; Dietler, G. Phys. Rev. Lett. 2011, 106, 248301 https://doi.org/10.1103/PhysRevLett.106.248301
  3. Sukhishvili, S. A.; Chen, Y.; Müller, J. D.; Gratton, E.; Schweizer, K. S.; Granick, S. Nature 2000, 406, 146. https://doi.org/10.1038/35018166
  4. Maier, B.; Radler, J. O. Phys. Rev. Lett. 1999, 82, 1911. https://doi.org/10.1103/PhysRevLett.82.1911
  5. Yethiraj, A. Macromolecules 2003, 36, 5854 https://doi.org/10.1021/ma025907r
  6. Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. J. Chem. Phys. 2006, 124, 084904. https://doi.org/10.1063/1.2161197
  7. Zhang, L.; Xia, A.; Xu, Y. European. Polym. J. 2000, 36, 847. https://doi.org/10.1016/S0014-3057(99)00119-6
  8. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Nat. Mater. 2008, 7, 997. https://doi.org/10.1038/nmat2292
  9. Leibler, S.; Singh, R.; Fisher, M. Phys. Rev. Lett. 1987, 59, 1989. https://doi.org/10.1103/PhysRevLett.59.1989
  10. Baumg rtner, A. J. Chem. Phys. 1982, 76, 4275. https://doi.org/10.1063/1.443476
  11. Cates, M. E.; Deutsch, J. M. J. de. Physique. 1986, 47, 2121. https://doi.org/10.1051/jphys:0198600470120212100
  12. Sakaue, T. Phys. Rev. Lett. 2011, 106, 167802 https://doi.org/10.1103/PhysRevLett.106.167802
  13. Sakaue, T.; Witz; G.; Dietler, G.; Wada, H. Europhys. Lett. 2010, 91, 68002 https://doi.org/10.1209/0295-5075/91/68002
  14. di Marzio, E. A. Macromolecules 1993, 26, 4613. https://doi.org/10.1021/ma00069a030
  15. Milner, S.; Newhall, J. Phys. Rev. Lett. 2010, 105, 208302. https://doi.org/10.1103/PhysRevLett.105.208302
  16. Brown, S.; Szamel, G. J. Chem. Phys. 1998, 108, 4705. https://doi.org/10.1063/1.475927
  17. Drub, F.; Alim, K.; Witz, G.; Dietler, G.; Frey, E. Nano. Lett. 2010, 10, 1445. https://doi.org/10.1021/nl1003575
  18. Shannon, S. R.; Choy, T. C. Phys. Rev. Lett. 1997, 79, 1455. https://doi.org/10.1103/PhysRevLett.79.1455
  19. Falck, E.; Punkkinen, O.; Vattulainen, I.; Ala-Nissila, T. Phys. Rev. E 2003, 68, 050102. https://doi.org/10.1103/PhysRevE.68.050102
  20. Sung, B. J.; Yethiraj, A. Phys. Rev. Lett. 2006, 96, 228103. https://doi.org/10.1103/PhysRevLett.96.228103
  21. Jung, H. T.; Sung, B. J.; Yethiraj, A. J. Polym. Sci. Pol. Phys. 2011, 49, 818. https://doi.org/10.1002/polb.22253
  22. Sung, B. J.; Chang, R.; Yethiraj, A. J. Chem. Phys. 2009, 130, 124908. https://doi.org/10.1063/1.3100398

Cited by

  1. Dynamic Properties of Linear and Cyclic Chains in Two Dimensions. Computer Simulation Studies vol.47, pp.14, 2014, https://doi.org/10.1021/ma500460b