DOI QR코드

DOI QR Code

BLOW UP OF SOLUTIONS WITH POSITIVE INITIAL ENERGY FOR THE NONLOCAL SEMILINEAR HEAT EQUATION

  • Fang, Zhong Bo (SCHOOL OF MATHEMATICAL SCIENCES, OCEAN UNIVERSITY OF CHINA) ;
  • Sun, Lu (SCHOOL OF MATHEMATICAL SCIENCES, OCEAN UNIVERSITY OF CHINA)
  • Received : 2012.08.08
  • Accepted : 2012.12.24
  • Published : 2012.12.25

Abstract

In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.

Acknowledgement

Supported by : Natural Science Foundation of Shandong Province of China

References

  1. G. Da Prato and M. Iannelli, Existence and regularity for a class of integro-differential equations of parabolic type, Math. Anal. Appl. 112(1)(1985)36-55. https://doi.org/10.1016/0022-247X(85)90275-6
  2. A. Friedman, Mathematics in Industrial Problems. Part 5, The IMA Volumes in Mathematics and Its Applications, vol. 49, Springer, New York, 1992.
  3. J. A. Nohel, Nonlinear Volterra equations for heat flow in materials with memory, Integral and Functional Differential Equations (Proc. Conf., West Virginia Univ., Morgantown, W. Va, 1979) (T. L. Herdman, H. W. Stech, and III S. M. Rankin, eds.), Lecture Notes in Pure and Appl. Math., Dekker, New York, 67(1981)3-82.
  4. H. M. Yin, On parabolic Volterra equations in several space dimensions, SIAM J. Math. Anal. 22(6)(1991)1723-1737. https://doi.org/10.1137/0522106
  5. H. M. Yin, Weak and classical solutions of some nonlinear Volterra integrodifferential equations, Comm. Partial Differential Equations 17(7-8)(1992)1369-1385. https://doi.org/10.1080/03605309208820889
  6. H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Ration. Mech. Anal. 51(1973)371-386.
  7. V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, J. Sov. Math. 10(1978)53-70. https://doi.org/10.1007/BF01109723
  8. J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford. 28(2)(1977)473-486. https://doi.org/10.1093/qmath/28.4.473
  9. L. Alfonsi and F.Weissler, Blow up in Rn for a parabolic equation with a damping nonlinear gradient term, Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhauser Boston, Massachusetts, 1992, pp. 1-20.
  10. J. N. Zhao, Existence and nonexistence of solutions for $u_t\;=\;div(\left|{\nabla}\right|^{p-2}{\nabla}u)+f({\nabla}u,\;u,\;x\;t)$, J. Math. Anal. Appl. 172(1)(1993)130-146. https://doi.org/10.1006/jmaa.1993.1012
  11. H. A. Levine, S. Park, and J. Serrin, Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type, J. Differential Equations 142(1)(1998)212-229. https://doi.org/10.1006/jdeq.1997.3362
  12. S. A. Messaoudi, A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy, J. Math. Anal. Appl. 273(1)(2002)243-247. https://doi.org/10.1016/S0022-247X(02)00220-2
  13. W.J. Liu, M.X. Wang, Blow-up of the solution for a p-Laplacian equation with positive initial energy, Acta. Appl. Math. 103(2008) 141-146. https://doi.org/10.1007/s10440-008-9225-3
  14. S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a Visco-elastic term, Progress in Nonlinear Differential Equations and Their Applications, 64(2005)351-356. https://doi.org/10.1007/3-7643-7385-7_19
  15. S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006)902-915. https://doi.org/10.1016/j.jmaa.2005.07.022
  16. P. Pucci, J. Serrin, Asymptotic stability for nonlinear parabolic systems, Energy Methods in Continuum Mechanics (Oviedo, 1994), Kluwer Academic Publishers, Dordrecht, (1996)66-74.
  17. E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149(1999)155-182. https://doi.org/10.1007/s002050050171

Cited by

  1. General decay rate estimates for a semilinear parabolic equation with memory term and mixed boundary condition vol.2014, pp.1, 2014, https://doi.org/10.1186/s13661-014-0197-0