DOI QR코드

DOI QR Code

Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries

Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가

  • Received : 2012.02.08
  • Accepted : 2012.02.25
  • Published : 2012.02.28

Abstract

Polyethylene (PE) separator is the most popular separator for lithium-ion batteries. However, it suffers from thermal contraction and mechanical rupture. In order to improve the thermal/mechanical dimensional stabilities, this study investigated the effects of $Si_3N_4$ coating. SCS (Silicon-nitride Coated Separator) has been fabricated by applying 10 ${\mu}m$-thick $Si_3N_4$/PVdF coating on one side of PE separator. SCS exhibits enhanced thermal stability over $100{\sim}150^{\circ}C$: its thermal shrinkage is reduced by 10~20% compared with pristine PE separator. In addition, SCS shows higher tensile strength than PE separator. Employing SCS hardly affects the C-rate performance of $LiCoO_2$/Li coin-cell, even though its ionic conductivity is somewhat lower than that of PE separator.

리튬 이차전지의 대표적인 분리막인 polyethylene(PE) 분리막은 열에 의한 수축 및 기계적 파열의 단점을 가지고 있다. 본 연구에서는 이러한 기존 PE 분리막을 개선하기 위해 $Si_3N_4$ 코팅 분리막 (SCS, Silicon-nitride Coated Separator)을 제작하였다. $Si_3N_4$ 코팅이 분리막의 열적/기계적 수치안정성, 이온전도도, 및 전지의 출력 특성에 미치는 영향을 알아보았다. $Si_3N_4$ 분말을 polyvinylidene fluoride(PVdF) 결착재를 이용하여 PE 분리막의 한 쪽 면에 10 ${\mu}m$ 두께로 코팅하여 SCS를 제작하였다. SCS는 PE 분리막보다 $100{\sim}150^{\circ}C$에서 우수한 열적안정성을 나타냈으며, 특히 $150^{\circ}C$에서의 수축률은 10~20% 감소를 보였다. 또한, SCS의 인장강도는 PE 분리막에 비해 증가를 보였다. SCS는 PE 분리막에 비해 다소 낮은 이온 전도도를 보였지만, $LiCoO_2$/Li 코인전지의 C-rate(0.2~3C) 특성 평가에서는 유사한 결과를 보였다.

Keywords

References

  1. Y. B. Jeong and D. W. Kim, 'The role of adhesive gel forming polymer coated on separator for rechargeable lithium metal polymer cells' Solid State Ionics, 176, 47 (2005). https://doi.org/10.1016/j.ssi.2004.03.007
  2. Y. M. Lee, N. S. Choi, J. A. Lee, W. H. Seol, K. Y. Cho, H. Y. Jung, J. W. Kim, and J. K. Park, 'Electrochemical effect of coating layer on the separator based on PVdF and PE nonwoven matrix' J. Power Sources, 146, 431 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.047
  3. F. L. Tye, 'Tortuosity' J. Power Sources, 9, 89 (1983). https://doi.org/10.1016/0378-7753(83)80026-3
  4. Z. Mao and R. E. White, 'A model for the deliverable capacity of the TiS2 electrode in a Li/TiS2 cell' J. Power Sources, 43, 181 (1993). https://doi.org/10.1016/0378-7753(93)80114-5
  5. H. Sakaebe and H. Matsumoto, 'Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte' Electrochim. Acta., 45, 1265 (2003). https://doi.org/10.1016/S0013-4686(99)00330-8
  6. T. Hayes, 'Root cause for failures in Li-ion batteries' 24th International Battery Seminar & Exhibit, Florida (2007).
  7. P. Arora and Z. Zhang, 'Battery separators' Chem. Rev, 104, 4419 (2004). https://doi.org/10.1021/cr020738u
  8. S. Augustin, V. Hennige, G. Hoerpel, and C. Hying, 'Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries' Desalination, 146, 23 (2002). https://doi.org/10.1016/S0011-9164(02)00465-4
  9. D. Takemura, S. Aihara, K. Hamano, M. Kise, T. Nishimura, H. Urushibata, and H. Yoshiyasu, 'A Powder particle size effect on ceramic powder based separator for lithium rechargeable battery' J. Power Sources, 146, 779 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.159
  10. J. G. Park et al., 'Principles and application of Lithium secondary batteries', Hongrung publishing company (2010).

Cited by

  1. Curable polymeric binder–ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries vol.4, pp.37, 2014, https://doi.org/10.1039/C4RA01309C