DOI QR코드

DOI QR Code

A Study on the Characteristics of Copper Ion Generator for the Removal of Algae

조류제거를 위한 구리이온 발생 반응기의 특성 연구

  • Lee, Sun-Young (Department of Chemical engineering, Hong Ik University) ;
  • Kim, Hae-Yon (Department of Chemical engineering, Hong Ik University) ;
  • Ju, Jeh-Beck (Department of Chemical engineering, Hong Ik University)
  • 이선영 (홍익대학교 공과대학 화학공학과) ;
  • 김혜연 (홍익대학교 공과대학 화학공학과) ;
  • 주재백 (홍익대학교 공과대학 화학공학과)
  • Received : 2012.01.30
  • Accepted : 2012.02.21
  • Published : 2012.02.28

Abstract

An annular flow type of copper electrolysis reactor was setup in order to generate the copper ions to remove algae in water. The operating characteristics of the reactor and the effect of copper ion on algae have been considered. By controling the applied current, the copper ion concentration could be obtained as desired level and the faradaic efficiency was above 90%. When the flow rate was increased, the copper ion concentration was linearly decreased due to the dilution effect and the effect of concentration overpotential was insignificant. With the increase of pH in water, the copper ion concentration was linearly decreased and not affected by the conductivity of the water. The concentration of chlorophyll-a was sharply decreased with the increase of copper ion concentration. The algae was effectively removed as the copper ion concentration was above 0.2 ppm. There was no difference between the copper ions obtained by dissolving copper sulfate and those produced by copper electrolysis. The algae removal efficiency was above 90% after 5 days as the copper ion concentration was above 0.4 ppm.

조류제거를 위한 구리이온을 생성하기 위한 환형 흐름 구리 전기분해 반응기 시스템을 구성하고 그 가동특성에 대하여 고찰하였다. 또한 구리이온이 조류에 미치는 영향도 살펴보았다. 인가전류를 증가하면 균등조로부터 배출되는 구리 이온 농도가 비례적으로 증가함을 알 수 있었다. 전류 밀도를 조절하여 원하는 구리농도를 얻을 수 있음을 알았으며 패러데이 효율은 90% 이상임을 알 수 있었다. 유량을 증가시키면 구리이온농도는 감소하였으며 이는 전극에서의 반응속도와는 상관없이 물의 증가량에 따른 희석 때문임을 알 수 있었으며 농도 과전위 영향은 미미하였다. pH가 증가할수록 생성되는 구리이온 농도는 이에 반비례하여 감소하였고 전기전도도의 변화는 배출되는 구리이온 농도에 별 영향을 미치지 않았다. 구리이온 농도가 증가시킬 경우 Chlorophyll-a 농도가 크게 감소함을 볼 수 있으며, 구리 이온 농도가 0.2 ppm 이상일 때 조류가 효과적으로 제거됨을 알 수 있다. 황산구리를 용해시킨 구리이온이나 전기분해를 통해 얻은 구리이온을 투여한 경우 별차이가 없었으며 5일 후 조류 제거효율은 0.4 ppm이상의 농도에서는 90%이상이었다.

Keywords

References

  1. The Ministry of Environment in Korea, Environmental survey on the present state of national lakes and set up of receptor sites in main lakes (1994).
  2. K. Ha, H.W. Kim and K. J. Ju, "The transition mechanism of plant plankton in the downstream of Nak Dong River", Environmental Inst. of In-Je Univ. the Proceedings of the 4th Symposium: 21 (1995).
  3. W. A. Wurts, 'Use of Bluestone for algae control', www.ca.uky.edu/wkrec/wurtspage.htm.
  4. G. P. Cooke and R. H. Kennedy, 'Managing drinking water supplies' Lake and Reserv. Manage., 17, 157 (2001). https://doi.org/10.1080/07438140109354128
  5. K. D. Neder, G. A. Carneiro, T. R. Queiroz and M. A. A. Desouza, 'Selection of natural treatment processes for algae removal' J. Water Science and Technology, 46, 347 (2002).
  6. F. G. Edwards, D. L. Fendley and Lunsford, 'Electrolytic treatment of an industrial watewater form a hosiery plant' Water Environment Research, 78, 435 (2006). https://doi.org/10.2175/106143006X98831
  7. C. G. Alfafara, K. Nakano, N. Nomura, T. Igarashi and M. Matsumura, 'Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater' Journal of Chemical Technology & Biotechnology, 77, 871 (2002). https://doi.org/10.1002/jctb.649
  8. A. A. Liao, M. Spitzer and A. J. Motheo, 'Electrocombustion of humic acid and removal of algae from aqueous solutions' J. Appl. Electrochem., 38, 721 (2008). https://doi.org/10.1007/s10800-008-9502-x
  9. K. D. Kim, "A study on the process of coagulant sedimentation for the algae removal in water treatment", MS Thesis, Seoul University (1997).
  10. G. H. Azarian, A. R. Mesdaghinia, F. Vaezi, R. Nabizadeh and D. Nematollahi, 'Algae removal by electrocoagulation process, application for treatment of the effluent from an industrial wastewater' Iranian J. Publ. Health, 36, 57 (2007).
  11. "The Science of Ionization", www.proenv.com/algaehow-it-works.htm.
  12. J. Dingman, 'A comparison of swimming pool disinfections: Chlorine vs. copper/silver ion' Environmental Health Review, Fall, 73 (2006).
  13. T. R. Muraleedharan and C. Venkobachar, 'Mechanism of biosorption of copper (II) by Ganoderma lucidum' Biotechnol. Bioeng., 35, 320 (1990). https://doi.org/10.1002/bit.260350314
  14. F. Pagnanelli, L. Toro and F. Veglio, 'Olive mill solid residues as heavy metal sorbent material: a preliminary study' Waste Management, 22, 901 (2002). https://doi.org/10.1016/S0956-053X(02)00086-7
  15. N. Ahalya, T. V. Ramachandra and R. D. Kanamadi, 'Biosorption of Heavy Metals' Resesarch Journal of Chemistry and Environment, 7, 71 (2003).
  16. A. Eaton, A. E. Greenberg, E. W. Rice, L. S. Clesceri (eds.), "Standard methods for the examination of water and wastewater", 21st ed., American Public Health Association Publications, Washington (2005).
  17. J. Newman, "Electrochemical Systems", John & Wileys, New York (1991).
  18. R. Dortwegt and E. V. Maughan, "The chemistry of copper in water and related studies planned at the advanced photon sources", Proceedings of the 2001 Particle Accelerator Conference, 1456, Chicago (2001).

Cited by

  1. A Study of Multi-channel AFS for Marine Traffic Facilities vol.39, pp.1, 2015, https://doi.org/10.5916/jkosme.2015.39.1.75