DOI QR코드

DOI QR Code

Determination of the Frumkin and Temkin Adsorption Isotherms of Hydrogen at Nickel/Acidic and Alkaline Aqueous Solution Interfaces Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H. (Department of Electronic Engineering, Kwangwoon University)
  • Received : 2012.02.16
  • Accepted : 2012.02.25
  • Published : 2012.02.28

Abstract

The phase-shift method and correlation constants, which are unique electrochemical impedance spectroscopy techniques for studying the linear relationship between the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) vs. potential (E) behavior for the optimum intermediate frequency ($f_o$) and the fractional surface coverage ($0{\leq}{\theta}{\leq}1$) vs. E behavior, are proposed and verified to determine the Frumkin, Langmuir, and Temkin adsorption isotherms and the related electrode kinetic and thermodynamic parameters. At Ni/0.5 M $H_2SO_4$ and 0.1M LiOH aqueous solution interfaces, the Frumkin and Temkin adsorption isotherms (${\theta}$ vs. E) of H for the cathodic hydrogen ($H_2$) evolution, interaction parameters (g), equilibrium constants (K), standard Gibbs energies (${\Delta}G^0_{\theta}$) of H adsorption, and rates of change (r) of ${\Delta}G^0_{\theta}$ with ${\theta}$ have been determined using the phase-shift method and correlation constants. A lateral repulsive interaction (g>0) between the adsorbed H species appears. The value of K in the alkaline aqueous solution is much greater than that in the acidic aqueous solution.

Keywords

References

  1. E. Gileadi, "Electrode kinetics", VCH, New York (1993).
  2. B. E. Conway, G. Jerkiewicz (Eds.), "Electrochemistry and materials science of cathodic hydrogen absorption and adsorption" Electrochemical Society Proceedings, Vol. 94-21, The Electrochemical Society, Pennington, NJ (1995).
  3. G. Jerkiewicz, P. Marcus (Eds.), 'Electrochemical surface science and hydrogen adsorption and absorption' Electrochemical Society Proceedings, Vol. 97-16, The Electrochemical Society, Pennington, NJ (1997).
  4. G. Jerkiewicz, J. M. Feliu, and B. N. Popov (Eds.), "Hydrogen at surface and interfaces", Electrochemical Society Proceedings, Vol. 2000-16, The Electrochemical Society, Pennington, NJ (2000).
  5. N. Krstajic, M. Popovic, B. Grgur, M. Vojnovic, and D. Sepa, 'On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism' J. Electroanal. Chem., 512, 16 (2001). https://doi.org/10.1016/S0022-0728(01)00590-3
  6. H. E. Alami, J. Creus, and X. Feaugas, 'Thermodynamic parameters evolution versus plastic strain during HER on nickel in sulphuric acid' Electrochim. Acta, 52, 4004 (2007). https://doi.org/10.1016/j.electacta.2006.11.029
  7. G. Jerkiewicz, 'Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen' Electrocatal., 1, 179 (2010). https://doi.org/10.1007/s12678-010-0022-1
  8. J. H. Chun and K. H. Ra, 'The phase-shift method for the Frumkin adsorption isotherms at the $Pd/H_2SO_4$ and KOH solution interfaces' J. Electrochem. Soc., 145, 3794 (1998). https://doi.org/10.1149/1.1838875
  9. J. H. Chun, K. H. Ra, and N. Y. Kim, 'The Langmuir adsorption isotherms of electroadsorbed hydrogens for the cathodic hydrogen evolution reactions at the $Pt(100)/H_2SO_4$ and LiOH aqueous electrolyte interfaces' Int. J. Hydrogen Energy, 26, 941 (2001). https://doi.org/10.1016/S0360-3199(01)00028-3
  10. J. H. Chun, K. H. Ra, and N. Y. Kim, 'Qualitative analysis of the Frumkin adsorption isotherm of the overpotentially deposited hydrogen at the poly-Ni/KOH aqueous electrolyte interface using the phase-shift method' J. Electrochem. Soc., 149, E325 (2002). https://doi.org/10.1149/1.1497402
  11. J. H. Chun, K. H. Ra, and N. Y. Kim, 'Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and $Rh/H_2SO_4$ aqueous electrolyte interfaces; Qualitative analysis using the phase-shift method' J. Electrochem. Soc., 150, E207 (2003). https://doi.org/10.1149/1.1554919
  12. J. H. Chun, 'Methods for estimating adsorption isotherms in electrochemical systems' U.S. Patent, 6613218 (2003).
  13. J. H. Chun, S. K. Jeon, B. K. Kim, and J. Y. Chun, 'Determination of the Langmuir adsorption isotherms of under-and over-potentially deposited hydrogen for the cathodic $H_2$ evolution reaction at poly-Ir/aqueous electrolyte interfaces using the phase-shift method' Int. J. Hydrogen Energy, 30, 247 (2005). https://doi.org/10.1016/j.ijhydene.2004.03.037
  14. J. H. Chun, S. K. Jeon, K. H. Ra, and J. Y. Chun, 'The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_2$ evolution reaction at poly-Re/aqueous electrolyte interfaces' Int. J. Hydrogen Energy, 30, 485 (2005). https://doi.org/10.1016/j.ijhydene.2004.04.012
  15. J. H. Chun, S. K. Jeon, N. Y. Kim, and J. Y. Chun, 'The phase-shift method for determining Langmuir and Temkin adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_2$ evolution reaction at the poly-Pt/$H_2SO_4$ aqueous electrolyte interface' Int. J. Hydrogen Energy, 30, 1423 (2005). https://doi.org/10.1016/j.ijhydene.2004.12.005
  16. J. H. Chun and N. Y. Kim, 'The phase-shift method for determining adsorption isotherms of hydrogen in electrochemical systems' Int. J. Hydrogen Energy, 31, 277 (2006). https://doi.org/10.1016/j.ijhydene.2005.04.029
  17. J. H. Chun, S. K. Jeon, and J. Y. Chun, 'The phase-shift method and correlation constants for determining adsorption isotherms of hydrogen at a palladium electrode interface' Int. J. Hydrogen Energy, 32, 1982 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.031
  18. J. H. Chun, N. Y. Kim, and J. Y. Chun, 'Determination of adsorption isotherms of hydrogen and hydroxide at PtIr alloy electrode interfaces using the phase-shift method and correlation constants' Int. J. Hydrogen Energy, 33, 762 (2008). https://doi.org/10.1016/j.ijhydene.2007.10.044
  19. J. Y. Chun and J. H. Chun, 'Correction and supplement to the determination of the optimum intermediate frequency for the phase-shift method [Chun et al., Int. J. Hydrogen Energy 30 (2005) 247-259, 1423-1436]' Int. J. Hydrogen Energy, 33, 4962 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.034
  20. J. Y. Chun and J. H. Chun, 'A negative value of the interaction parameter for over-potentially deposited hydrogen at Pt, Ir, and PtIr alloy electrode interfaces' Electrochem. Commun., 11, 744 (2009). https://doi.org/10.1016/j.elecom.2009.01.027
  21. J. Y. Chun and J. H. Chun, 'Determination of adsorption isotherms of hydrogen on titanium in sulfuric acid solution using the phase-shift method and correlation constants' J. Chem. Eng. Data, 54, 1236 (2009). https://doi.org/10.1021/je8006327
  22. J. H. Chun and J. Y. Chun, 'Determination of adsorption isotherms of hydrogen on zirconium in sulfuric acid solution using the phase-shift method and correlation constants' J. Korean Electrochem. Soc., 12, 26 (2009). https://doi.org/10.5229/JKES.2009.12.1.026
  23. J. Chun, J. Lee, and J. H. Chun, 'Determination of adsorption isotherms of over-potentially deposited hydrogen on platinum and iridium in KOH aqueous solution using the phase-shift method and correlation constants' J. Chem. Eng. Data, 55, 2363 (2010). https://doi.org/10.1021/je900805q
  24. J. Chun, N. Y. Kim, and J. H. Chun, 'Determination of adsorption isotherms of hydroxide and deuteroxide on PtIr alloy in LiOH solutions using the phase-shift method and correlation constants' J. Chem. Eng. Data, 55, 3825 (2010). https://doi.org/10.1021/je100328d
  25. J. Chun, N. Y. Kim, and J. H. Chun, 'Determination of the adsorption isotherms of hydrogen and deuterium isotopes on a PtIr alloy in LiOH solutions using the phase-shift method and correlation constants' J. Chem. Eng. Data, 55, 5598 (2010). https://doi.org/10.1021/je100418n
  26. J. Chun, N. Y. Kim, and J. H. Chun, 'Determination of the adsorption isotherms of overpotentially deposited hydrogen on a PtIr alloy in $H_2SO_4$ aqueous solution using the phase-shift method and correlation constants' J. Chem. Eng. Data, 56, 251 (2011). https://doi.org/10.1021/je100837q
  27. K. Kvastek and V. Horvat-Radosevic, 'Comment on: "Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and $Rh/H_2SO_4$ aqueous electrolyte interfaces; Qualitative analysis using the phase-shift method, J. Electrochem. Soc., 150 (2003) E207-217"' J. Electrochem. Soc., 151, L9 (2004). https://doi.org/10.1149/1.1783910
  28. J. H. Chun, K. H. Ra, and N. Y. Kim, 'Response to comment on: "Langmuir adsorption isotherms of overpotentially deposited hydrogen at poly-Au and $Rh/H_2SO_4$ aqueous electrolyte interfaces; Qualitative analysis using the phase-shift method, J. Electrochem. Soc. 150 (2003) E207-217"' J. Electrochem. Soc., 151, L11 (2004).
  29. A. Lasia, 'Comments on: "The phase-shift method for determining Langmuir adsorption isotherms of overpotentially deposited hydrogen for the cathodic $H_2$ evolution reaction at poly-Re/aqueous electrolyte interfaces, Int. J. Hydrogen Energy 30 (2005) 485-499"' Int. J. Hydrogen Energy, 30, 913 (2005). https://doi.org/10.1016/j.ijhydene.2005.02.008
  30. J. H. Chun, S. K. Jeon, N. Y. Kim, and J. Y. Chun, 'Response to comments on: "The phase-shift method for determining Langmuir adsorption isotherms of overpotentially deposited hydrogen for the cathodic $H_2$ evolution reaction at poly-Re/aqueous electrolyte interfaces, Int. J. Hydrogen Energy 3 0 (2005) 485-499"' Int. J. Hydrogen Energy, 30, 919 (2005). https://doi.org/10.1016/j.ijhydene.2005.02.007
  31. V. Horvat-Radosevic and K. Kvastek, 'Pitfalls of the phase-shift method for determining adsorption isotherms' Electrochem. Commun., 11, 1460 (2009). https://doi.org/10.1016/j.elecom.2009.05.032
  32. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, 'Interfacial electrochemistry' Addison-Wesley, Reading, MA, 6, 72-73 (1975).
  33. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, 'Interfacial electrochemistry', Addison-Wesley, Reading, MA, 86-93 (1975).
  34. D. A. Harrington, and B. E. Conway, 'AC impedance of faradaic reactions involving electrosorbed intermediates-I. Kinetic theory', Electrochim. Acta, 32, 1703 (1987).
  35. E. Gileadi, "Electrode kinetics", VCH, New York, 291-303 (1993).
  36. E. Gileadi, "Electrode kinetics", VCH, New York, 1993, 307-309 (1993).
  37. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, 'Interfacial electrochemistry', Addison-Wesley, Reading, MA, 82-86 (1975).
  38. E. Gileadi, "Electrode kinetics", VCH, New York, 261-280 (1993).
  39. JO'M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, "Modern electrochemistry", 2nd Ed., Kluwer Academic/Plenum Press, New York, Vol. 2A, 1193-1197 (2000).
  40. D. W. Oxtoby, H. P. Gillis, and N. H. Nachtrieb, "Principles of modern chemistry", 5th Ed., Thomson Learning Inc., New York, 446 (2002).