DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile

  • Received : 2011.11.14
  • Accepted : 2011.12.02
  • Published : 2012.02.20

Abstract

The nucleophilic substitution reactions of dibutyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; kH/kD) are secondary inverse ($k_H/k_D$ = 0.86-0.97) with the strongly basic anilines while primary normal ($k_H/k_D$ = 1.04-1.10) with the weakly basic anilines. The DKIEs, steric effects of the two ligands, activation parameters, cross-interaction constants, variation trends of the kH/kD values with X, and mechanism are discussed for the anilinolyses of the nine ($R_1O$)($R_2O$)P(=O)Cl-type chlorophosphates. A concerted mechanism is proposed with a backside nucleophilic attack transition state for the strongly basic anilines and with a frontside attack involving a hydrogen-bonded four-center-type transition state for the weakly basic anilines on the basis of the magnitudes, secondary inverse and primary normal, and variation trends of the $k_H/k_D$ values with X.

Keywords

References

  1. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  2. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  3. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  4. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  5. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  6. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  7. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  8. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  9. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  10. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  11. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  12. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  13. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  14. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939. https://doi.org/10.5012/bkcs.2011.32.6.1939
  15. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1997. https://doi.org/10.5012/bkcs.2011.32.6.1997
  16. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2306. https://doi.org/10.5012/bkcs.2011.32.7.2306
  17. Adhikary, K. K.; Lumbiny, B. J.; Dey, S.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2628. https://doi.org/10.5012/bkcs.2011.32.8.2628
  18. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3245. https://doi.org/10.5012/bkcs.2011.32.9.3245
  19. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3355. https://doi.org/10.5012/bkcs.2011.32.9.3355
  20. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3783. https://doi.org/10.5012/bkcs.2011.32.10.3783
  21. Hoque, M. E. U.;Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3880. https://doi.org/10.5012/bkcs.2011.32.11.3880
  22. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  23. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
  24. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  25. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  26. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
  27. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
  28. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  29. Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  30. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709. https://doi.org/10.5012/bkcs.2011.32.2.709
  31. Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138. https://doi.org/10.5012/bkcs.2011.32.4.1138
  32. Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
  33. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474. https://doi.org/10.1002/poc.1788
  34. Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1945. https://doi.org/10.5012/bkcs.2011.32.6.1945
  35. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2109. https://doi.org/10.5012/bkcs.2011.32.6.2109
  36. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2339. https://doi.org/10.5012/bkcs.2011.32.7.2339
  37. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2805. https://doi.org/10.5012/bkcs.2011.32.8.2805
  38. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3505. https://doi.org/10.5012/bkcs.2011.32.9.3505
  39. Adhikary, K. K.; Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3743. https://doi.org/10.5012/bkcs.2011.32.10.3743
  40. Adhikary, K. K.; Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3947. https://doi.org/10.5012/bkcs.2011.32.11.3947
  41. Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1625. https://doi.org/10.5012/bkcs.2011.32.5.1625
  42. Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3587. https://doi.org/10.5012/bkcs.2011.32.10.3587
  43. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  44. Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
  45. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  46. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
  47. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
  48. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  49. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  50. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431. https://doi.org/10.1021/j100175a004
  51. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008. https://doi.org/10.1021/ja038343v
  52. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641. https://doi.org/10.1021/ja0511927
  53. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  54. Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
  55. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  56. Taft, R. W. Steric Effect in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
  57. Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
  58. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  59. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  60. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  61. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440. https://doi.org/10.1139/v89-220
  62. Dunn, E. J.; Moir, R. Y.; Buncel, E.; Purdon, J. G.; Bannard, R. A. B. Can. J. Chem. 1990, 68, 1837. https://doi.org/10.1139/v90-286
  63. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601. https://doi.org/10.1039/b314886f
  64. Onyido, I.; Albright, K.; Buncel, E. Org. Biomol. Chem. 2005, 3, 1468. https://doi.org/10.1039/b501537e
  65. Williams, A.; Naylor, R. A. J. Chem. Soc. B 1971, 1967. https://doi.org/10.1039/j29710001967
  66. Douglas K. T.; Williams, A. J. Chem. Soc., Perkin Trans 2 1976,515.
  67. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  68. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  69. Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
  70. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217. https://doi.org/10.1016/S0065-3160(06)41004-2
  71. Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
  72. Gronert, S.; Fajin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
  73. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  74. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  75. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015

Cited by

  1. Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3218
  2. Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3372
  3. Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1096
  4. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  5. -butyl phenyl phosphonochloridothioate in acetonitrile: Synthesis, characterization, kinetic study, and reaction mechanism vol.30, pp.10, 2017, https://doi.org/10.1002/poc.3679
  6. Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
  7. Pyridinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1085
  8. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.843
  9. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1879
  10. Kinetics and Mechanism of Anilinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3274
  11. Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3811
  12. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2012, https://doi.org/10.5012/bkcs.2014.35.3.753
  13. Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.9, 2012, https://doi.org/10.5012/bkcs.2014.35.9.2797