DOI QR코드

DOI QR Code

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry and, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Byun, Jong-Hoe (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2011.11.23
  • Accepted : 2012.01.30
  • Published : 2012.02.20

Abstract

Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Keywords

References

  1. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. https://doi.org/10.1146/annurev.matsci.30.1.545
  3. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  4. Gan, L. M.; Liu, B.; Chew, C. H.; Xu, S. J.; Chua, S. J.; Loy, G. L.; Xu, G. Q. Langmuir 1997, 13, 6427. https://doi.org/10.1021/la9705468
  5. Bol, A. A.; Meijerink, A. Phys. Rev. B: Condens. Matter 1998, 58, R15997. https://doi.org/10.1103/PhysRevB.58.R15997
  6. Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q. Appl. Phys. Lett. 1998, 73, 478. https://doi.org/10.1063/1.121906
  7. Tanaka, M.; Sawai, S.; Sengoku, M.; Kato, M.; Masumoto, Y. J. Appl. Phys. 2000, 87, 8535. https://doi.org/10.1063/1.373574
  8. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C. S. Curr. Appl. Phys. 2005, 5, 31. https://doi.org/10.1016/j.cap.2003.11.075
  9. Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z.; Xie, Y.; Qian, Y.; Liu, X. Chem. Mater. 1998, 10, 2309. https://doi.org/10.1021/cm980181s
  10. Jun, Y. W.; Jang, J. T.; Cheon, J. W. Bull. Korean Chem. Soc. 2006, 27, 961. https://doi.org/10.5012/bkcs.2006.27.7.961
  11. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. https://doi.org/10.1126/science.281.5385.2016
  12. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir. 1999, 15, 6845. https://doi.org/10.1021/la990165p
  13. Kim, J. E.; Hwang, C. S.; Yoon, S. Bull. Kor. Chem. Soc. 2008, 29, 1247. https://doi.org/10.5012/bkcs.2008.29.6.1247
  14. Abassi, Y. A.; Jackson, J. A.; Zhu, J.; O'Connell, J.; Wang, X.; Xu, X. J. Immunol Methods 2004, 292, 195. https://doi.org/10.1016/j.jim.2004.06.022
  15. Xing, J. Z.; Zhu, L.; Jackson, J. A.; Gabos, S.; Sun, X. J.; Wang, X. B.; Xu, X. Chem. Res. Toxicol. 2005, 18, 154. https://doi.org/10.1021/tx049721s
  16. Yi. G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  17. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  18. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  19. Brus, L. E. Appl. Phys. A 1991, 53, 465. https://doi.org/10.1007/BF00331535
  20. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853. https://doi.org/10.1039/b303287f
  21. Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta. 1983, 70, 71. https://doi.org/10.1016/S0020-1693(00)82780-2
  22. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. https://doi.org/10.1021/cm034081k
  23. Hardman, R. Environ. Health Perspect. 2006, 114, 165. https://doi.org/10.1289/ehp.8284
  24. Dua, P.; Jeong, S.; Lee, S. E.; Hong, S. W.; Kim, S.; Lee, D.-K. Bull. Kor. Chem. Soc. 2010, 31, 1555. https://doi.org/10.5012/bkcs.2010.31.6.1555
  25. Mahto, S. K.; Park, C.; Yoon, T. H.; Rhee, S. W. Toxicol. In Vitro 2010, 24, 1070. https://doi.org/10.1016/j.tiv.2010.03.017
  26. Wang, L.; Zheng, H.; Long, Y.; Gao, M.; Hao, J.; Du, J.; Mao, X.; Zhou, D. J. Hazard Mater. 2010, 177, 1134. https://doi.org/10.1016/j.jhazmat.2009.12.001
  27. Zhang, Y. H.; Zhang, H. S.; Ma, M.; Guo, X. F.; Wang, H. Appl. Surf. Sci. 2009, 255, 4747. https://doi.org/10.1016/j.apsusc.2008.09.009

Cited by

  1. Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1181
  2. Ions in Aqueous Solution vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10467
  3. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution vol.6, pp.5, 2016, https://doi.org/10.3390/nano6050082
  4. Se quantum dots in vivo: the effect of surface chemistry vol.6, pp.5, 2017, https://doi.org/10.1039/C7TX00137A
  5. Chemosensors for biogenic amines and biothiols vol.6, pp.30, 2018, https://doi.org/10.1039/C8TB00732B
  6. Emerging Frontiers of Graphene in Biomedicine vol.25, pp.2, 2012, https://doi.org/10.4014/jmb.1412.12045