References
- O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
- Zhang, Z.; Chen, P.; Murakami, T. N.; Zakeeruddin, S. M.; Gratzel, M. Adv. Funct. Mater. 2008, 18, 341. https://doi.org/10.1002/adfm.200701041
- Wang, M.; Chamberland, N.; Breau, L.; Moser, J.-E.; Humphry- Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. Nat. Chem. 2010, 2, 385. https://doi.org/10.1038/nchem.610
- Li, D.; Li, H.; Luo, Y.; Li, K.; Meng, Q.; Armand, M.; Chen, L. Adv. Funct. Mater. 2010, 20, 3358. https://doi.org/10.1002/adfm.201000150
- Tian, H.; Jiang, X.; Yu, Z.; Kloo, L.; Hagfeldt, A.; Sun, L. Angew. Chem. Int. Ed. 2010, 49, 7328. https://doi.org/10.1002/anie.201003740
- Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S. M.; Nazeeruddin, Md. K.; Grätzel, M. J. Phys. Chem. B 2001, 105, 10461. https://doi.org/10.1021/jp012075a
- Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. J. Am. Chem. Soc. 2005, 127, 9648. https://doi.org/10.1021/ja0506814
- Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. Nat. Chem. 2011, 3, 213. https://doi.org/10.1038/nchem.966
- Kim, H.-S.; Ko, S.-B.; Jang, I.-H.; Park, N.-G. Chem. Comm. 2011, 47, 12637. https://doi.org/10.1039/c1cc14991a
- Sommeling, P. M.; Spath, M.; Smit, H. J. P.; Bakker, N. J.; Kroon, J. M. J. Photochem. Photobio. A 2004, 164, 137. https://doi.org/10.1016/j.jphotochem.2003.12.017
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.-E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583. https://doi.org/10.1038/26936
- Snaith, H. J.; Humphry-Baker, R.; Chen, P.; Cesar, I.; Zakeeruddin, S. M.; Grätzel, M. Nanotech. 2008, 19, 424003. https://doi.org/10.1088/0957-4484/19/42/424003
- Ding, I.-K.; Tetreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 2431. https://doi.org/10.1002/adfm.200900541
- Poplavskyy, D.; Nelson, J. J. Appl. Phys. 2003, 93, 341. https://doi.org/10.1063/1.1525866
- Kim, M.-J.; Lee, C.-R.; Jeong, W.-S.; Im, J.-H.; Ryu, T. I.; Park, N.-G. J. Phys.Chem. C 2010, 114, 19849. https://doi.org/10.1021/jp107437h
- Kroeze, J. E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S. D.; Carr, K.; Gratzel, M.; Durrant, J. R. Adv. Funct. Mater. 2006, 16, 1832. https://doi.org/10.1002/adfm.200500748
- Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S. M.; Gratzel, M. J. Phys. Chem. C 2007, 111, 6550. https://doi.org/10.1021/jp066178a
Cited by
- Optimization of a New ZnO Nanorods Hydrothermal Synthesis Method for Solid State Dye Sensitized Solar Cells Applications vol.117, pp.6, 2013, https://doi.org/10.1021/jp305787r
- Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell vol.5, pp.10, 2013, https://doi.org/10.1021/am4001858
- Organolead Halide Perovskite: New Horizons in Solar Cell Research vol.118, pp.11, 2014, https://doi.org/10.1021/jp409025w
- Study on structure, thermal stabilization and light absorption of lead-bromide perovskite light harvesters vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3549-3
- A new potential for methylammonium lead iodide vol.19, pp.3, 2017, https://doi.org/10.1039/C6CP05829A
- Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells vol.34, pp.10, 2012, https://doi.org/10.5012/bkcs.2013.34.10.2883
- Importance of halide perovskites for next generation solar cells – A review vol.219, pp.None, 2012, https://doi.org/10.1016/j.matlet.2018.02.089
- Interface engineering of cross-linkable ruthenium complex dye to chelate cations for enhancing the performance of solid-state dye sensitized solar cell vol.215, pp.None, 2018, https://doi.org/10.1016/j.matchemphys.2018.05.011