DOI QR코드

DOI QR Code

Effect of Overlayer Thickness of Hole Transport Material on Photovoltaic Performance in Solid-Sate Dye-Sensitized Solar Cell

  • Kim, Hui-Seon (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University) ;
  • Lee, Chang-Ryul (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University) ;
  • Jang, In-Hyuk (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University) ;
  • Kang, Wee-Kyung (Department of Chemistry, Soongsil University) ;
  • Park, Nam-Gyu (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University)
  • Received : 2012.01.26
  • Accepted : 2012.01.31
  • Published : 2012.02.20

Abstract

The photovoltaic performance of solid-state dye-sensitized solar cells employing hole transport material (HTM), 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), has been investigated in terms of HTM overlayer thickness. Two important parameters, soak time and spin-coating rate, are varied to control the HTM thickness. Decrease in the period of loading the spiro-MeOTAD solution on $TiO_2$ layer (soak time) leads to decrease in the HTM overlayer thickness, whereas decrease in spin-coating rate increases the HTM overlayer thickness. Photocurrent density and fill factor increase with decreasing the overlayer thickness, whereas open-circuit voltage remains almost unchanged. The improved photocurrent density is mainly ascribed to the enhanced charge transport rate, associated with the improved charge collection efficiency. Among the studied HTM overlayer thicknesses, ca. 230 nm-thick HTM overlayer demonstrates best efficiency of 4.5% at AM 1.5G one sun light intensity.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Zhang, Z.; Chen, P.; Murakami, T. N.; Zakeeruddin, S. M.; Gratzel, M. Adv. Funct. Mater. 2008, 18, 341. https://doi.org/10.1002/adfm.200701041
  3. Wang, M.; Chamberland, N.; Breau, L.; Moser, J.-E.; Humphry- Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. Nat. Chem. 2010, 2, 385. https://doi.org/10.1038/nchem.610
  4. Li, D.; Li, H.; Luo, Y.; Li, K.; Meng, Q.; Armand, M.; Chen, L. Adv. Funct. Mater. 2010, 20, 3358. https://doi.org/10.1002/adfm.201000150
  5. Tian, H.; Jiang, X.; Yu, Z.; Kloo, L.; Hagfeldt, A.; Sun, L. Angew. Chem. Int. Ed. 2010, 49, 7328. https://doi.org/10.1002/anie.201003740
  6. Nusbaumer, H.; Moser, J.-E.; Zakeeruddin, S. M.; Nazeeruddin, Md. K.; Grätzel, M. J. Phys. Chem. B 2001, 105, 10461. https://doi.org/10.1021/jp012075a
  7. Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. J. Am. Chem. Soc. 2005, 127, 9648. https://doi.org/10.1021/ja0506814
  8. Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. Nat. Chem. 2011, 3, 213. https://doi.org/10.1038/nchem.966
  9. Kim, H.-S.; Ko, S.-B.; Jang, I.-H.; Park, N.-G. Chem. Comm. 2011, 47, 12637. https://doi.org/10.1039/c1cc14991a
  10. Sommeling, P. M.; Spath, M.; Smit, H. J. P.; Bakker, N. J.; Kroon, J. M. J. Photochem. Photobio. A 2004, 164, 137. https://doi.org/10.1016/j.jphotochem.2003.12.017
  11. Bach, U.; Lupo, D.; Comte, P.; Moser, J.-E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583. https://doi.org/10.1038/26936
  12. Snaith, H. J.; Humphry-Baker, R.; Chen, P.; Cesar, I.; Zakeeruddin, S. M.; Grätzel, M. Nanotech. 2008, 19, 424003. https://doi.org/10.1088/0957-4484/19/42/424003
  13. Ding, I.-K.; Tetreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 2431. https://doi.org/10.1002/adfm.200900541
  14. Poplavskyy, D.; Nelson, J. J. Appl. Phys. 2003, 93, 341. https://doi.org/10.1063/1.1525866
  15. Kim, M.-J.; Lee, C.-R.; Jeong, W.-S.; Im, J.-H.; Ryu, T. I.; Park, N.-G. J. Phys.Chem. C 2010, 114, 19849. https://doi.org/10.1021/jp107437h
  16. Kroeze, J. E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S. D.; Carr, K.; Gratzel, M.; Durrant, J. R. Adv. Funct. Mater. 2006, 16, 1832. https://doi.org/10.1002/adfm.200500748
  17. Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S. M.; Gratzel, M. J. Phys. Chem. C 2007, 111, 6550. https://doi.org/10.1021/jp066178a

Cited by

  1. Optimization of a New ZnO Nanorods Hydrothermal Synthesis Method for Solid State Dye Sensitized Solar Cells Applications vol.117, pp.6, 2013, https://doi.org/10.1021/jp305787r
  2. Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell vol.5, pp.10, 2013, https://doi.org/10.1021/am4001858
  3. Organolead Halide Perovskite: New Horizons in Solar Cell Research vol.118, pp.11, 2014, https://doi.org/10.1021/jp409025w
  4. Study on structure, thermal stabilization and light absorption of lead-bromide perovskite light harvesters vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3549-3
  5. A new potential for methylammonium lead iodide vol.19, pp.3, 2017, https://doi.org/10.1039/C6CP05829A
  6. Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells vol.34, pp.10, 2012, https://doi.org/10.5012/bkcs.2013.34.10.2883
  7. Importance of halide perovskites for next generation solar cells – A review vol.219, pp.None, 2012, https://doi.org/10.1016/j.matlet.2018.02.089
  8. Interface engineering of cross-linkable ruthenium complex dye to chelate cations for enhancing the performance of solid-state dye sensitized solar cell vol.215, pp.None, 2018, https://doi.org/10.1016/j.matchemphys.2018.05.011