DOI QR코드

DOI QR Code

Smartphone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

  • Received : 2011.10.10
  • Accepted : 2011.12.12
  • Published : 2012.02.20

Abstract

This report presents a mobile instrumentation platform based on a smartphone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smartphone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smartphone for demonstration. This report is believed to show the possibility of adapting a smartphone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smartphone.

Keywords

References

  1. Editorial, Nat. Methods 2010, 7(2), 87. https://doi.org/10.1038/nmeth0210-87
  2. Mukhopadhyay, R. Anal. Chem. 2009, 81(21), 8659. https://doi.org/10.1021/ac902060w
  3. Google Android developer. http://developer.android.com/ index.html (accessed Dec 2011).
  4. Apple computer. iOS development center. http://developer.apple.com/devcenter/ios/ index.action (accessed Dec 2011).
  5. http://bestsmartphonetoday.com/ tipb/odm-ph-1-precision-ph-meter-for-iphone (accessed Dec 2011).
  6. Ellerbee, A. K.; Phillips, S. T.; Siegel, A. C.; Mirica, K. A.; Martinez, A. W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G. M. Anal. Chem. 2009, 81(20), 8447-8452. https://doi.org/10.1021/ac901307q
  7. Harvey, D. Modern Analytical Chemistry, 1st ed.; McGraw-Hill: 2000.
  8. Haun, J. B.; Castro, C. M.; Wang, R.; Peterson, V. M.; Marinelli, B. S.; Lee, H.; Weissleder, R. Sci. Transl. Med. 2011, 3(71), 71ra16.
  9. Lee, H.-C. Introduction to Color Imaging Science; Cambridge University Press: 2005.
  10. Stubbings, T. C.; Hutter, H. Anal. Chem. 2000, 72(7), 282 A-288 A. https://doi.org/10.1021/ac002788+
  11. Mathworks Product Documentation, http://www.mathworks.com/ help/techdoc/ref/rgb2hsv.html (accessed Dec 2011)
  12. Perrin, D. D.; Dempsey, B. Buffers for pH and Metal Ion Control; Chapman and Hall: New York, 1974.
  13. Chang, B.-Y.; Mavré, F.; Chow, K.-F.; Crooks, J. A.; Crooks, R. M. Anal. Chem. 2010, 82(12), 5317-5322. https://doi.org/10.1021/ac100846v
  14. Tyagi, S.; Bratu, D. P.; Kramer, F. R. Nat. Biotech. 1998, 16(1), 49-53. https://doi.org/10.1038/nbt0198-49
  15. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Anal. Chem. 2009, 82(1), 3-10.
  16. Whitesides, G. M. Diagnotics for all http://tedxboston.org/speaker/whitesides (accessed Dec 2011).
  17. Chow, K.-F.; Mavreì, F.; Crooks, J. A.; Chang, B.-Y.; Crooks, R. M. J. Am. Chem. Soc. 2009, 131(24), 8364-8365. https://doi.org/10.1021/ja902683f
  18. Williams, A. J.; Pence, H. E., J. Chem. Educ. 2011, 88(6), 683- 686. https://doi.org/10.1021/ed200029p
  19. Williams, A. J. Mobile Chemistry-Chemistry in Your Hands and in Your Face; http://www.rsc.org/chemistryworld/ Issues/2010/May/MobileChemistryChemistryHandsFace.asp (accessed Dec 2011).

Cited by

  1. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva vol.13, pp.16, 2013, https://doi.org/10.1039/c3lc50431j
  2. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes vol.22, pp.6, 2013, https://doi.org/10.1007/s10956-013-9444-x
  3. Development of the smartphone-based colorimetry for multi-analyte sensing arrays vol.14, pp.10, 2014, https://doi.org/10.1039/C3LC51451J
  4. Cholesterol testing on a smartphone vol.14, pp.4, 2014, https://doi.org/10.1039/C3LC51194D
  5. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach vol.6, pp.7, 2014, https://doi.org/10.1039/C3AY41727A
  6. Integrating Biochemiluminescence Detection on Smartphones: Mobile Chemistry Platform for Point-of-Need Analysis vol.86, pp.15, 2014, https://doi.org/10.1021/ac502137s
  7. Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices vol.86, pp.19, 2014, https://doi.org/10.1021/ac5019205
  8. Red–Green–Blue Electrogenerated Chemiluminescence Utilizing a Digital Camera as Detector vol.86, pp.5, 2014, https://doi.org/10.1021/ac404135f
  9. Smartphone laser beam spatial profiler vol.40, pp.22, 2015, https://doi.org/10.1364/OL.40.005156
  10. Combined “dual” absorption and fluorescence smartphone spectrometers vol.40, pp.8, 2015, https://doi.org/10.1364/OL.40.001737
  11. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone vol.92, pp.10, 2015, https://doi.org/10.1021/acs.jchemed.5b00167
  12. Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique vol.10, pp.5, 2016, https://doi.org/10.1002/jbio.201500329
  13. Paper-based analytical devices for environmental analysis vol.141, pp.6, 2016, https://doi.org/10.1039/C5AN02572A
  14. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas vol.16, pp.17, 2016, https://doi.org/10.1039/C6LC00737F
  15. Optical fiber smartphone spectrometer vol.41, pp.10, 2016, https://doi.org/10.1364/OL.41.002237
  16. A portable chromium ion detection system based on a smartphone readout device vol.8, pp.38, 2016, https://doi.org/10.1039/C6AY01994C
  17. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter vol.142, pp.11, 2017, https://doi.org/10.1039/C7AN00535K
  18. A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm vol.17, pp.7, 2017, https://doi.org/10.3390/s17071604
  19. Indicator-Impregnated Agarose Films for Colorimetric Measurement of pH vol.22, pp.1, 2017, https://doi.org/10.1177/2211068216669686
  20. Detection of Adulterated Diesel Using Fluorescent Test Strips and Smartphone Readout vol.31, pp.11, 2017, https://doi.org/10.1021/acs.energyfuels.7b01538
  21. Detection of ultraviolet B radiation with internal smartphone sensors vol.45, pp.6, 2017, https://doi.org/10.1080/10739149.2017.1298042
  22. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives vol.47, pp.2, 2017, https://doi.org/10.1080/10408347.2016.1233805
  23. Determination of Titratable Acidity in Wine Using Potentiometric, Conductometric, and Photometric Methods vol.94, pp.9, 2017, https://doi.org/10.1021/acs.jchemed.6b00891
  24. Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination vol.6, pp.2168-2372, 2018, https://doi.org/10.1109/JTEHM.2017.2765631
  25. Using Colour Images for Online Yeast Growth Estimation vol.19, pp.4, 2019, https://doi.org/10.3390/s19040894
  26. 안드로이드 스마트폰 기반 Smart pH Reader 개발 vol.8, pp.4, 2012, https://doi.org/10.14372/iemek.2013.8.4.227
  27. A Review of Ubiquitous Mobile Sensing Based on Smartphones vol.4, pp.1, 2012, https://doi.org/10.5875/ausmt.v4i1.301
  28. 과학 수업에서 스마트 기기를 활용한 소집단 학습의 효과 vol.36, pp.4, 2012, https://doi.org/10.14697/jkase.2016.36.4.0519
  29. Complicating Colorism: Race, Skin Color, and the Likelihood of Arrest vol.3, pp.None, 2012, https://doi.org/10.1177/2378023117725611
  30. Paper–Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine vol.89, pp.24, 2012, https://doi.org/10.1021/acs.analchem.7b02612
  31. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water vol.52, pp.6, 2018, https://doi.org/10.1021/acs.est.7b05436
  32. Quantitative Analysis Using a Flatbed Scanner: Aspirin Quantification in Pharmaceutical Tablets vol.96, pp.7, 2012, https://doi.org/10.1021/acs.jchemed.8b00620
  33. Fabrication of a Lateral Gradient Rugate in Porous Silicon for a Miniature Spectrometer Application vol.6, pp.24, 2012, https://doi.org/10.1002/celc.201901600
  34. Approaching Diesel Fuel Quality in Chemistry Lab Classes: Undergraduate Student’s Achievements on Determination of Biodiesel Content in Diesel Oil Applying Solvatochromic Effect vol.97, pp.12, 2012, https://doi.org/10.1021/acs.jchemed.0c00773
  35. 포물선 운동을 중심으로 한 가상현실 기반 물리 실험 교육 시뮬레이터 개발 vol.10, pp.1, 2012, https://doi.org/10.3745/ktsde.2021.10.1.19