DOI QR코드

DOI QR Code

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Suh, Joon-Hyuk (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Jung-Hyun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Lee, Hye-Yeon (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Eom, Han-Young (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Un-Yong (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Yang, Dong-Hyug (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Han, Sang-Beom (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Youm, Jeong-Rok (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University)
  • Received : 2011.11.17
  • Accepted : 2011.12.12
  • Published : 2012.02.20

Abstract

A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Keywords

References

  1. Potterat, O. Planta Med. 2009, 76, 7.
  2. Amagase, H.; Farnsworth, N. R. Food Res. Int. 2011, 44, 1702. https://doi.org/10.1016/j.foodres.2011.03.027
  3. Xiaoming, Q.; Ryo, Y.; Koichi, A.; Takahiro, I.; Koji, K. J. Appl. Glycosci. 2000, 47, 155. https://doi.org/10.5458/jag.47.155
  4. Kim, S. Y.; Kim, H. P.; Huh, H.; Kim, Y. C. Arch. Pharm. Res. 1997, 20, 529. https://doi.org/10.1007/BF02975206
  5. Yohiko, T.-O.; Mitsuru, M.; Masahiro, N.; Makiko, Y.; Namino, S.-T.; Harukazu, F. J. Agr. Food Chem. 2004, 52, 2092. https://doi.org/10.1021/jf035445w
  6. Qian, J. Food Chem. 2004, 87, 283. https://doi.org/10.1016/j.foodchem.2003.11.008
  7. Korea Food and Drug Administration (KFDA), Korean Pharmacopoeia 9th edition, 2007.
  8. Sun, C.; Liu, H. Z. Anal. Chim. Acta 2008, 612, 160. https://doi.org/10.1016/j.aca.2008.02.040
  9. Lever, M.; Slow, S. Clin. Biochem. 2010, 43, 732. https://doi.org/10.1016/j.clinbiochem.2010.03.009
  10. Zwart, F. J. D.; Slow, S.; Payne, R. J.; Lever, M.; George, P. M.; Gerrard, J. A.; Chambers, S. T. Food Chem. 2003, 83, 197. https://doi.org/10.1016/S0308-8146(03)00063-3
  11. Saarinen, M. T.; Kettunen, H.; Pulliainen, K.; Peuranen, S.; Tiihonen, K.; Remus, J. J. Agr. Food Chem. 2001, 49, 559. https://doi.org/10.1021/jf000675l
  12. Shin, Y. G.; Cho, K. H.; Kim, J. M.; Park, M. K.; Park, J. H. J. Chromatogr. A 1999, 857, 331. https://doi.org/10.1016/S0021-9673(99)00720-7
  13. Koc, H.; Mar, M.-H.; Ranasinghe, A.; Swenberg, J. A.; Zeisel, S. H. Anal. Chem. 2002, 74, 4734. https://doi.org/10.1021/ac025624x
  14. Wood, K. V.; Bonham, C. C.; Miles, D.; Rothwell, A. P.; Peel, G.; Wood, B. C.; Rhodes, D. Phytochemistry 2002, 59, 759. https://doi.org/10.1016/S0031-9422(02)00049-3
  15. Bessieres, M. A.; Gibon, Y.; Lefeuvre, J. C.; Larher, F. J. Agr. Food Chem. 1999, 47, 3718. https://doi.org/10.1021/jf990031h
  16. Lee, S. M.; Park, C. K.; Cho, B. G.; Cho, K. S.; Min, B. S.; Bae, K. Nat. Prod. Sci. 2011, 17, 104.
  17. Lucena, R.; Cardenas, S.; Valcarcel, M. Anal. Bioanal. Chem 2007, 388, 1663. https://doi.org/10.1007/s00216-007-1344-6
  18. Eom, H. Y.; Park, S.-Y.; Kim, M. K.; Suh, J. H.; Yeom, H.; Min, J. W.; Kim, U.; Lee, J.; Youm, J.-R.; Han, S. B. J. Chromatogr. A 2010, 1217, 4347. https://doi.org/10.1016/j.chroma.2010.04.047
  19. Kirsch, S. H.; Herrmann, W.; Rabagny, Y.; Obeid, R. J. Chromatogr. B 2010, 878, 3338. https://doi.org/10.1016/j.jchromb.2010.10.016
  20. Tetaz, T.; Detzner, S.; Friedlein, A.; Molitor, B.; Mary, J.-L. J. Chromatogr. A 2011, 1218, 5892. https://doi.org/10.1016/j.chroma.2010.09.027
  21. Jandera, P. Anal. Chim. Acta 2011, 692, 1. https://doi.org/10.1016/j.aca.2011.02.047
  22. Mico-Tormos, A.; Collado-Soriano, C.; Torres-Lapasio, J. R.; Simo-Alfonso, E.; Ramis-Ramos, G. J. Chromatogr. A 2008, 1180, 32. https://doi.org/10.1016/j.chroma.2007.11.105
  23. Snyder, L. R.; Kirkland, J. J.; Glajch, J. L. Practical HPLC Method Development; John Wiley & Sons: Inc., 1997.
  24. Quiming, N. S.; Denola, N. L.; Soliev, A. B.; Saito, Y.; Jinno, K. Anal. Bioanal. Chem. 2007, 389, 1477. https://doi.org/10.1007/s00216-007-1554-y
  25. Ha, Y.; Na, Y.; Seo, J.; Kim, S.; Linhardt, R.; Kim, Y. J. Chromatogr. A 2006, 1135, 27. https://doi.org/10.1016/j.chroma.2006.09.015
  26. Almeling, S.; Holzgrabe, U. J. Chromatogr. A 2010, 1217, 2163. https://doi.org/10.1016/j.chroma.2010.02.017
  27. Cardenas, S.; Gallego, M.; Valcarcel, M. Anal. Chim. Acta 1999, 402, 1. https://doi.org/10.1016/S0003-2670(99)00712-6
  28. Heron, S.; Maloumbi, M.-G.; Dreux, M.; Verette, E.; Tchapla, A. J. Chromatogr. A 2007, 1161, 152. https://doi.org/10.1016/j.chroma.2007.05.101
  29. Jiang, X.; Vanderhorst, A.; Lima, V.; Schoenmakers, P. J. Chromatogr. A 2005, 1076, 51. https://doi.org/10.1016/j.chroma.2005.03.135
  30. Megoulas, N.; Koupparis, M. J. Chromatogr. A 2004, 1057, 125. https://doi.org/10.1016/j.chroma.2004.09.052
  31. Ramos, R.; Libong, D.; Rakotomanga, M.; Gaudin, K.; Loiseau, P.; Chaminade, P. J. Chromatogr. A 2008, 1209, 88. https://doi.org/10.1016/j.chroma.2008.07.080
  32. Shock, D.; Dennis, G. R.; Guiochon, G.; Dasgupta, P. K.; Shalliker, R. A. Anal. Chim. Acta 2011, 703, 245. https://doi.org/10.1016/j.aca.2011.06.060

Cited by

  1. Traditional herbal prescription LASAP-C inhibits melanin synthesis in B16F10 melanoma cells and zebrafish vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1209-7
  2. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis vol.40, pp.1, 2016, https://doi.org/10.1002/jssc.201600843
  3. New approaches for extraction and determination of betaine from Beta vulgaris samples by hydrophilic interaction liquid chromatography-tandem mass spectrometry vol.409, pp.21, 2017, https://doi.org/10.1007/s00216-017-0461-0
  4. Quantitative analysis of betaine in Lycii Fructus by HILIC-ELSD vol.36, pp.10, 2013, https://doi.org/10.1007/s12272-013-0148-9
  5. Betaine in Cereal Grains and Grain-Based Products vol.7, pp.4, 2018, https://doi.org/10.3390/foods7040049
  6. Evaluation of rat in vivo fetal‐to‐maternal transfer clearances of various xenobiotics by umbilical perfusion vol.102, pp.9, 2012, https://doi.org/10.1002/jps.23551