DOI QR코드

DOI QR Code

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Kim, Hyun-Jin (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Hwang, Min-Ji (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Jeong, Eun-Bin (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Yun, Hui-Jun (School of Nano & Materials and Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Dong-Hoon (Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Yun-Hi (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Park, Chan-Eon (Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Yoon, Yong-Jin (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Nano & Materials and Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Sang-Gyeong (Department of Chemistry, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University)
  • Received : 2011.11.03
  • Accepted : 2011.12.09
  • Published : 2012.02.20

Abstract

New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

Keywords

References

  1. Jun-ichi, N.; Shigeki, M.; Hirokazu, T.; Yoshiro, Y. Chem. Lett. 2006, 35, 1236. https://doi.org/10.1246/cl.2006.1236
  2. Kimberly, C. D.; John, E. A.; Yueh-Lin, L. Adv. Mater. 2006, 18, 1721. https://doi.org/10.1002/adma.200600188
  3. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers; Oxford University Press: New York, 1999.
  4. Karl, N.; Marktanner, J. Mol. Cryst. Liq. Cryst. 2001, 355, 149. https://doi.org/10.1080/10587250108023659
  5. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  6. Katz, H. E.; Bao, Z.; Gilat Acc, S. L. Chem. Res. 2001, 34, 359. https://doi.org/10.1021/ar990114j
  7. Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716. https://doi.org/10.1021/ja00072a026
  8. Gundlach, D. J.; Lin,Y.; Jackson, T. N.; Schlom, D. G. Appl. Phys. Lett. 1997, 71, 3853. https://doi.org/10.1063/1.120524
  9. Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem., Int. Ed. 2003, 42, 1159. https://doi.org/10.1002/anie.200390305
  10. Meng, H.; Zheng, J.; Lovinger, A. J.; Wang, B.; Van Patten, P. G.; Bao, Z. Chem. Mater. 2003, 15, 1778. https://doi.org/10.1021/cm020866z
  11. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406. https://doi.org/10.1021/ja043189d
  12. Zhao, Q.; Kim, T. H.; Park, J. W.; Kim, S. O.; Jung, S. O.; Kim, J. W.; Ahn, T.; Kim, Y. H.; Yi, M. H.; Kwon, S. K. Adv. Mater. 2008, 20, 4868. https://doi.org/10.1002/adma.200800061
  13. Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716. https://doi.org/10.1021/ja00072a026
  14. Ponomarenko, S. A.; Kirchmeyer, S.; Elschner, A.; Alpatova, N. M.; Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G. Chem. Mater. 2006, 18, 579. https://doi.org/10.1021/cm052210m
  15. Lee, S. K.; Yang, W. J.; Choi, J. J.; Kim, C. H.; Jeon, S. J.; Cho, B. R. Org. Lett. 2005, 7, 323. https://doi.org/10.1021/ol047658s
  16. Boudreault, P. L. T.; Virkar, A. A.; Bao, Z.; Leclerc, M. Org. Electron. 2010, 11, 1649. https://doi.org/10.1016/j.orgel.2010.07.011
  17. Kim, H. S.; Kim, Y. H.; Kim, T. H.; Noh, Y. Y.; Pyo, S. M.; Yi, M. H.; Kim, D. Y.; Kwon, S. K. Chem. Mater. 2007, 19, 3561. https://doi.org/10.1021/cm070053g
  18. Miura, Z.; Chen, H.; Ujii, S.; De Feyter, M.; Zdanowska, P.; Jonkheijm, A. P. H. J.; chen ning, E.W.; Meijer, F. W.; Schryver, F. C. D. J. Am. Chem. Soc. 2003, 125, 14968. https://doi.org/10.1021/ja037407z
  19. Ando, S.; Nishida, J.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. Chem. Mater. 2005, 17, 1261. https://doi.org/10.1021/cm0478632

Cited by

  1. Synthesis of Naturally Occurring Norlignan (±)-Nyasol vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1247
  2. Alkyl Chain Length Dependence of the Field-Effect Mobility in Novel Anthracene Derivatives vol.7, pp.1, 2015, https://doi.org/10.1021/am5063103
  3. Anthracene-based semiconductors for organic field-effect transistors vol.6, pp.28, 2018, https://doi.org/10.1039/C8TC01865K
  4. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications vol.10, pp.7, 2021, https://doi.org/10.1002/ajoc.202100134