DOI QR코드

DOI QR Code

Antimicrobial Activity of Thinned Strawberry Fruits at Different Maturation Stages

  • Kim, Dong Sub (Department of Plant Science, Seoul National University) ;
  • Na, Haeyoung (Department of Horticultural Science, Mokpo National University) ;
  • Song, Jeong Hwa (Division of Horticulture and Education, Korea National Arboretum) ;
  • Kwack, Yurina (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Sung Kyeom (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Chun, Changhoo (Department of Plant Science, Seoul National University)
  • Received : 2012.10.24
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

Among the phenolic compounds that is generally present in strawberry fruits, five simple phenolics, three flavonoids, and a stilbene were tested for their antimicrobial activity against seven fungi and one oomycete. trans-Cinnamic acid showed strong antimicrobial activity, and the antimicrobial effect of the simple phenolics decreased with an increase in the number of hydroxyl groups. Phytophthora capsici was the most susceptible to the phenolic compounds tested in this study. trans-Cinnamic acid, p-hydroxybenzoic acid, and kaempferol were mainly detected in 'Seolhyang' strawberry fruits, and the total phenolic contents of the fruits decreased during their development. Extracts of the green (1-10% red color) and red (above 90% red color) strawberry fruits reduced the mycelial growth and zoospore germination rate of P. capsici, and the extract of red strawberry fruit showed strong antimicrobial activity against the zoospore germination of P. capsici. These results indicate that strawberry fruits contain antimicrobial phenolic compounds and that strawberry fruit extract can be used as a natural fungistat.

Keywords

References

  1. Aaby, K., S. Mazur, A. Nes, and G. Skrede. 2012. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 132:86-97. https://doi.org/10.1016/j.foodchem.2011.10.037
  2. Bavaresco, L., S. Vezzulli, P. Battilani, P. Giorni, A. Pietri, and T. Bertuzzi. 2003. Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalex in synthesis in grapes. J. Agric. Food Chem. 51:6151-6157. https://doi.org/10.1021/jf0301908
  3. Dixon, R.A. and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097. https://doi.org/10.1105/tpc.7.7.1085
  4. Ehala, S., M. Vaher, and M. Kaljurand. 2005. Characterization of phenolic profiles of northern European berries by capillary electrophoresis and determination of their antioxidant activity. J. Agric. Food Chem. 53:6484-6490. https://doi.org/10.1021/jf050397w
  5. Ferreyra, R.M., S.Z. Vina, A. Mugridge, and A.R. Chaves. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hort. 112:27-32. https://doi.org/10.1016/j.scienta.2006.12.001
  6. French, C.J. and G.H.N. Towers. 1992. Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry 31:3017-3020. https://doi.org/10.1016/0031-9422(92)83438-5
  7. Hakkinen, S.H. and A.R. Torronen. 2000. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Intl. 33:517-524. https://doi.org/10.1016/S0963-9969(00)00086-7
  8. Hakkinen, S.H., I.M. Heinonen, S.O. Karenlampi, H.M. Mykkanen, J. Ruuskanen, and A.R. Torronen. 1999. Screening of selected favonoids and phenolic acids in 19 berries. Food Res. Intl. 32:345-353. https://doi.org/10.1016/S0963-9969(99)00095-2
  9. Hakkinen, S.H., S.O. Karenlampi, I.M. Heinonen, H.M. Mykkanen, and A.R. Torronen. 1998. HPLC method for screening of flavonoids and phenolic acids in berries. J. Sci. Food Agric. 77:543-551. https://doi.org/10.1002/(SICI)1097-0010(199808)77:4<543::AID-JSFA78>3.0.CO;2-I
  10. Halbwirth, H., I. Puhl, U. Haas, K. Jezik, D. Treutter, and K. Stich. 2006. Two-phase flavonoid formation in developing strawberry (Fragaria x ananassa) fruit. J. Agric. Food Chem. 54:1479-1485. https://doi.org/10.1021/jf0524170
  11. Herald, P.J. and P.M. Davidson. 1983. Antibacterial activity of selected hydroxycinnamic acids. J. Food Sci. 48:1378-1379. https://doi.org/10.1111/j.1365-2621.1983.tb09243.x
  12. Jimenez, J.B., J.M. Orea, C. Montero, A.G. Urena, E. Navas, K. Slowing, M.P. Gomez-Serranillos, E. Carretero, and D.D. Martinis. 2005. Resveratrol treatment controls microbial flora, prolongs shelf life, and preserves nutritional quality of fruits. J. Agric. Food Chem. 53:1526-1530. https://doi.org/10.1021/jf048426a
  13. Kim, J.H., B.C. Campbell, N.E. Mahoney, K.L. Chan, and R.J. Molyneux. 2004. Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay. J. Agric. Food Chem. 52:7814-7821. https://doi.org/10.1021/jf0487093
  14. Kosar, M., E. Kafkas, S. Paydas, and K.H.C. Baser. 2004. Phenolic composition of strawberry genotypes at different maturation stages. J. Agric. Food Chem. 52:1586-1589. https://doi.org/10.1021/jf035093t
  15. Korukluoglu, M., Y. Sahan, and A. Yigit. 2008. Antifungal properties of olive leaf extracts and their phenolic compounds. J. Food Safety 28:76-87. https://doi.org/10.1111/j.1745-4565.2007.00096.x
  16. Maas, J.L., S.Y. Wang, and G.J. Galletta. 1991. Evaluation of strawberry cultivars for ellagic acid content. HortScience 26:66-68.
  17. Menager, I., M. Jost, and C. Aubert. 2004. Changes in physicochemical characteristics and volatile constituents of strawberry (cv. Cigaline) during maturation. J. Agric. Food Chem. 52:1248-1254. https://doi.org/10.1021/jf0350919
  18. Meyers, K.J., C.B. Watkins, M.P. Pritts, and R.H. Liu. 2003. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 51:6887-6892. https://doi.org/10.1021/jf034506n
  19. Montero, T.M., E.M. Molla, R.M. Esteban, and F.J. Lopez-Andreu. 1996. Quality attributes of strawberry during ripening. Sci. Hort. 65:239-250. https://doi.org/10.1016/0304-4238(96)00892-8
  20. Nohynek, L.J., H.L. Alakomi, M.P. Kahkonen, M. Heinonen, I.M. Helander, K.M. Oksman-Caldentey, and R.H. Puupponen-Pimia. 2006. Berry phenolics - Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 54:18-32. https://doi.org/10.1207/s15327914nc5401_4
  21. Pincemail, J., C. Kevers, J. Tabart, J.O. Defraigne, and J. Dommes. 2012. Time influence phenolic and ascorbic acid contents and antioxidant capacity of strawberry (Fragaria x ananassa). J. Food Sci. 77:205-210. https://doi.org/10.1111/j.1750-3841.2011.02539.x
  22. Puupponen-Pimia, R., L. Nohynek, C. Meier, M. Kahkonen, M. Heinonen, A. Hopia, and K.M. Oksman-Caldentey. 2001. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90:494-507. https://doi.org/10.1046/j.1365-2672.2001.01271.x
  23. Puupponen-Pimia, R., L. Nohynek, S. Hartmann-Schmidlin, M. Kahkonen, M. Heinonen, K. Maatta-Riihinen, and K.M. Oksman-Caldentey. 2005. Berry phenolics selectively inhibit the growth of intestinalpathogens. J. Appl. Microbiol. 98:991-1000. https://doi.org/10.1111/j.1365-2672.2005.02547.x
  24. Ramos-Nino, M.E., M.N. Clifford, and M.R. Adams. 1996. Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. J. Appl. Bacteriol. 80:303-310. https://doi.org/10.1111/j.1365-2672.1996.tb03224.x
  25. Rauha, J.P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Intl. J. Food Microbial. 56:3-12. https://doi.org/10.1016/S0168-1605(00)00218-X
  26. Rivera-Vargas, L.I., A.F. Schmitthenner, and T.L. Graham. 1993. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32:851-857. https://doi.org/10.1016/0031-9422(93)85219-H
  27. Spada, P.D.S., G.G.N. de Souza, G.V. Bortolini, J.A.P. Henriques, and M. Salvador. 2008. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. J. Med. Food 11:144-151. https://doi.org/10.1089/jmf.2007.598
  28. Stephan, D., A. Schmitt, S.M. Carvalho, B. Seddon, and E. Koch. 2005. Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. Eur. J. Plant Pathol. 112:235-246. https://doi.org/10.1007/s10658-005-2083-1
  29. Stohr, H. and K. Herrmann. 1975. The phenolics of fruits. V. The phenolics of strawberries and their changes during development and ripeness of the fruits. Z. Jebensm Unters-Forsch. 159:341-348.
  30. Sultana, B. and F. Anwar. 2008. Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 108:879-884. https://doi.org/10.1016/j.foodchem.2007.11.053
  31. Terry, L.A., D.C. Joyce, N.K.B. Adikaram, and B.P.S. Khambay. 2004. Preformed antimicrobial compounds in strawberry fruit and flower tissues. Postharvest Biol. Technol. 31:201-212. https://doi.org/10.1016/j.postharvbio.2003.08.003
  32. Treutter, D. 2006. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 4:147-157. https://doi.org/10.1007/s10311-006-0068-8
  33. Urena, A.G., J.M. Orea, C. Montero, and J.B. Jimenez. 2003. Improving postharvest resistance in fruits by external application of trans-resveratrol. J. Agric. Food Chem. 51:82-89. https://doi.org/10.1021/jf020663v

Cited by

  1. Secondary Metabolite Profiling in Various Parts of Tomato Plants vol.32, pp.2, 2014, https://doi.org/10.7235/hort.2014.13165
  2. Analysis of the <i>trans</i>-Cinnamic Acid Content in <i>Cinnamomum spp.</i> and Commercial Cinnamon Powder Using HPLC vol.04, pp.04, 2015, https://doi.org/10.4236/jacen.2015.44011
  3. Phenolic Acids Released in Maize Rhizosphere During Maize-Soybean Intercropping Inhibit Phytophthora Blight of Soybean vol.11, pp.None, 2012, https://doi.org/10.3389/fpls.2020.00886
  4. Supervised binary classification methods for strawberry ripeness discrimination from bioimpedance data vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-90471-5