DOI QR코드

DOI QR Code

광섬유센서의 프리스트레인 부가 고정방식

Fixation Method of Prestressed Fiber Optic Sensor

  • 투고 : 2012.10.23
  • 심사 : 2012.12.17
  • 발행 : 2012.12.31

초록

광섬유센서는 구조물에 매립 또는 부착시 전단응력에 의해 편광이 발생하여 피크가 2개로 갈라질 수 있기 때문에 센서는 보호되고 양 끝단을 고정하는 방법으로 패키징을 하여야 하나, 광섬유의 클래딩 부분을 부착하는 방식으로 고정하면, 변형발생시 광케이블을 구성하는 코어와 클래딩 사이에서 미끄러짐 현상이 발생하기 때문에 이를 방지하기위해 센서의 양 끝단에 고정구를 사용하고 광섬유를 부분탈피하여 부착하여 접점을 만들어 줌으로써 외력에 의해 발생하는 변형을 정확하게 측정이 가능하도록 하였다. 그리고 기존 광섬유격자센서가 자체적으로 압축변형의 측정이 곤란한 점을 개선하기위해 미리 긴장(Pre-Strain)상태를 유지하기 위하여 두 개의 접점사이를 볼트와 너트로 조절하여 프리스트레인 가변이 가능하도록 하여 인장/압축변형 측정을 가능하게 한 광섬유격자센서 패키지를 제작하였다. 이러한 광섬유격자센서패키지를 실제구조물에 적용하여 측정하였으며, 이를 통하여 안전을 감시하는 모니터링시스템에 적용할 수 있도록 하였다.

FBG sensor peaks could be split due to polarization by shear strain, when the fiber optic sensors embedded or attached to the structure. For the fiber optic sensor packages, sensor grating has to be protected from shear strains. Also, pretension has to be applied to the sensor because compressive strain must be measured. Without pretension of sensor, the sensor does not show any change of signal until it is stretched. In order to mesure compressive and tensile strains, two fixing point and prestressed sensor need. In the fixing point, just holding the optical fiber cause slip between core and cladding in the fiber. A Fixation method of prestressed FBG sensors fixed with partially stripped fibers was developed. The sensor package has the prestress controllable fixtures at the fixing points. Prestress to the sensor imposed by controlling the two fixed points with bolts and nuts make it easy to measure compressive strain as well as tensile strain. The fiber optic sensor packages applied to the actual structure and the structural monitoring system using the package can be applied to safety through surveillance.

키워드

참고문헌

  1. Meltz, G., Morey, W.W., and Glenn, W.H., "Formation of Bragg grating in optical fibers by a transverse holographic method," Optics Letters, Vol. 14, No. 15, 1989, pp. 823-825. https://doi.org/10.1364/OL.14.000823
  2. Morey, W.W., Meltz, G., and Glenn, W.H., "Fiber Optic Bragg Grating Sensors," SPIE, 1169, 1989, pp. 98-106.
  3. Koo, K.P., and Kersey, A.D., "Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing," Journal of Lightwave Technology, Vol. 13, No. 7, 1995, pp. 1243-1248. https://doi.org/10.1109/50.400692
  4. Kim, K.S., "System Integration Test of Containment Structure of Nuclear Power Plant Using Fiber Optic Sensor," Journal of the Korean Society for Composite Materials, Vol. 16, No. 6, 2003, pp. 56-60.
  5. Kim, K.S., Kollar, L., and Springer, G.S., "A Model of Embedded Fiber Optic Fabry-Perot Temperature and Strain Sensors," Journal of Composite Materials, Vol. 27, No. 17, 1993, pp. 1618-1662. https://doi.org/10.1177/002199839302701701
  6. Lee, J.R., Kim, C.G., and Hong, C.S., "Spectrum Characteristics and Stress Induced Birefringence of Fiber Bragg Grating Embedded into Composite Laminates," Journal of the Korean Society for Composite Materials, Vol. 15, No. 3, 2002, pp. 30-38.
  7. Kim, K.S., "Monitoring System For The Subway Structures Using Prestrained FBG Sensors Fixed With Partially Stripped Fibers," Journal of COSEIK, Vol. 21, No. 6, 2008, pp. 611-617.