DOI QR코드

DOI QR Code

Electrochemically Fabricated Alloys and Semiconductors Containing Indium

  • Chung, Yonghwa (Department of Advanced Materials Chemistry, Korea University) ;
  • Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2012.06.16
  • Accepted : 2012.08.02
  • Published : 2012.09.30

Abstract

Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.

Keywords

References

  1. A. M. Alfantazi and R. R. Moskalyk, Minerals Engineering, 16, 687 (2003). https://doi.org/10.1016/S0892-6875(03)00168-7
  2. J. R. Mills, R. A. King and C. E. T. White "Indium," C.A. Hampel (ed.), Rare metals handbook, Chapman and Hall Ltd, London, p. 220 (1961).
  3. J. R. Mills, B. G. Hunt and G. H. Turner, J. Electrochem. Soc., 100, 136 (1953). https://doi.org/10.1149/1.2781095
  4. C. J. Smithells, W. F. Gale and T. C. Totemeier (eds.), Smithells metals reference book, 8th ed. Elsevier Butterworth-Heinemann, Amsterdam, II-354 (2004).
  5. R. Piercy and N. A. Hampson, J. Appl. Electrochem., 5, 1 (1975). https://doi.org/10.1007/BF00625955
  6. V. V. Losev and A. I. Molodov "Indium," A.F. Bard (ed.), Encyclopedia of electrochemistry of the elements, vol. 6, Marcel Dekker Inc, New York, p. 1 (1976).
  7. Y. Chung and C.W. Lee, J. Electrochem. Sci. Tech., 3, 1 (2012). https://doi.org/10.5229/JECST.2012.3.1.1
  8. F. C. Walsh and D. R. Gabe, Surface Tech., 13, 304 (1981).
  9. R. K. Pandey, S.N. Sahu and S. Chandra, Handbook of semiconductor electrodeposition, Marcel Dekker, Inc., New York, (1996).
  10. S. Ozer and C. Besikci, J. Phys. D: Appl. Phys., 36, 559 (2003). https://doi.org/10.1088/0022-3727/36/5/321
  11. C. S. Johnson, J. T. Vaughey, M. M. Thackeray, T. Sarakonsri, S. A. Hackney, L. Fransson, K. Edstrom and J.O. Thomas, Electrochem. Comm., 2, 595 (2000). https://doi.org/10.1016/S1388-2481(00)00087-4
  12. Y. Yang, L. Li, X. Huang, G. Li and L. Zhang, J. Mater. Sci., 42, 2753 (2007). https://doi.org/10.1007/s10853-006-1272-4
  13. S. Y. Wang, S. H. Lin and Y. M. Houng, Appl. Phys. Lett., 51, 83 (1987). https://doi.org/10.1063/1.98982
  14. T. S. Chao, C. L. Lee and T. F. Lei, J. Mater. Sci. Lett., 12, 721(1993). https://doi.org/10.1007/BF00626698
  15. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Crystal Growth, 227-228, 481 (2001). https://doi.org/10.1016/S0022-0248(01)00747-3
  16. T. P. Pearsall and M. Papuchon, Appl. Phys. Lett., 33, 640 (1978). https://doi.org/10.1063/1.90447
  17. W. J. Li, Y. N. Zhou and Z. W. Fu, Appl. Surf. Sci., 257, 2881 (2011). https://doi.org/10.1016/j.apsusc.2010.10.085
  18. V. A. Williams, J. Electrochem. Soc., 113, 234 (1966). https://doi.org/10.1149/1.2423922
  19. V. S. Saji, S. M. Lee and C.W. Lee, J. Korean Electrochem. Soc., 14, 61 (2011). https://doi.org/10.5229/JKES.2011.14.2.061
  20. V. S. Saji, I. H. Choi and C. W. Lee, Solar Energy, 85, 2666 (2011). https://doi.org/10.1016/j.solener.2011.08.003
  21. J. L. Vossen and E.S. Poliniak, Thin Solid Films, 13, 281(1972). https://doi.org/10.1016/0040-6090(72)90296-9
  22. L. L. Kazmerski, M. S. Ayyagari and G. A. Sanborn, J. Appl. Phys., 46, 4865 (1975). https://doi.org/10.1063/1.321521
  23. A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, Sol. Energ. Mater. Sol. Cells, 35, 53 (1994). https://doi.org/10.1016/0927-0248(94)90122-8
  24. G. S. Anderson and G.K. Wehner, Surf. Sci., 2, 367 (1964). https://doi.org/10.1016/0039-6028(64)90076-7
  25. J. Szczyrbowski, A. Czapla and M. Jachimowski, Thin Solid Films, 42, 193 (1977). https://doi.org/10.1016/0040-6090(77)90417-5
  26. R. Venkataraghavan, K. M. Satyalakshmi, K. S. R. K. Rao, A. K. Sreedhar, M. S. Hegde and H. L. Bhat, Bull. Mater. Sci., 19, 123 (1996). https://doi.org/10.1007/BF02744794
  27. T. Saitoh, S. Matsubara and S. Minagawa, J. Electrochem. Soc., 123, 403 (1976). https://doi.org/10.1149/1.2132836
  28. J. Kane, H. P. Schweizer and W. Kern, Thin Solid Films, 29, 155 (1975). https://doi.org/10.1016/0040-6090(75)90224-2
  29. R. N. Bhattacharya, J. Electrochem. Soc., 130, 2040 (1983). https://doi.org/10.1149/1.2119516
  30. C. W. Bates, K. F. Nelson, S. A. Raza, J. B. Mooney, J. M. Recktenwald, L. Macintosh and R. Lamoreaux, Thin Solid Films, 88, 279 (1982). https://doi.org/10.1016/0040-6090(82)90058-X
  31. C. R. Abernathy, C. W. Bates, A. A. Anani, B. Haba and G. Smestad, Appl. Phys. Lett., 45, 890 (1984). https://doi.org/10.1063/1.95403
  32. S. A. Ringel, A. W. Smith, M. H. MacDougal and A. Rohatgi, J. Appl. Phys., 70, 881 (1991). https://doi.org/10.1063/1.349652
  33. M. Kawaji, S. Baba and A. Kinbara, Thin Solid Films, 58, 183 (1979). https://doi.org/10.1016/0040-6090(79)90234-7
  34. A. Brenner, "Electrodeposition of Alloys," 2 volumes, Academic press, New York (1963).
  35. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, Solar Energy, 77, 725 (2004). https://doi.org/10.1016/j.solener.2004.05.024
  36. O. G. Zarubitskii, A. A. Omel'chuk, V. G. Budnik and V. T. Melekhin, Russ. J. Appl. Chem., 75, 1965 (2002). https://doi.org/10.1023/A:1023391516065
  37. D. R. Lide (ed), CRC Handbook of Chemistry and Physics, 88th ed. CRC Press, Boca Raton, FL, p. 8 (2008).
  38. J. W. Cuthbertson, N. Parkinson and H. P. Rooksby, J. Electrochem. Soc., 100, 107 (1953). https://doi.org/10.1149/1.2781091
  39. F. A. Kroger, J. Electrochem. Soc., 125, 2028 (1978). https://doi.org/10.1149/1.2131357
  40. R. N. Bhattacharya, D. Cahen and G. Hodes, Solar Energy Mater., 10, 41 (1984). https://doi.org/10.1016/0165-1633(84)90006-6
  41. J. Ortega and J. Herrero, J. Electrochem. Soc., 136, 3388 (1989). https://doi.org/10.1149/1.2096456
  42. S. N. Vinogradov, Y. P. Perelygin and E. A. Efimov, Soviet Electrochem., 23, 909 (1987).
  43. S. B. Saidman, A. G. Munoz and J. B. Bessone, J. Appl. Electrochem., 29, 245 (1999). https://doi.org/10.1023/A:1003487808354
  44. A. G. Munoz, S. B. Saidman and J. B. Bessone, J. Appl. Electrochem., 29, 1297 (1999). https://doi.org/10.1023/A:1003777023798
  45. E. Dalchiele, S. Cattarin, M. Musiani, U. Casellato, P. Guerriero and G. Rossetto, J. Electroanal. Chem., 418, 83 (1996). https://doi.org/10.1016/S0022-0728(96)04776-6
  46. J. J. McChesney, J. Haigh, I. M. Dharmadasa and D. J. Mowthorpe, Optical Materials, 6, 63 (1996). https://doi.org/10.1016/0925-3467(96)00026-2
  47. T. Fulop, C. Bekele, U. Landau, J. Angus and K. Kash, Thin Solid Films, 449, 1 (2004). https://doi.org/10.1016/S0040-6090(03)01383-X
  48. M. I. Khan, X. Wang, K. N. Bozhilov and C. S. Ozkan, J. Nanomaterials, 2008, 698759 (2008).
  49. C. Sanjeeviraja and T. Mahalingam, J. Mater. Sci. Lett., 11, 525 (1992). https://doi.org/10.1007/BF00731127
  50. Y. Igasaki and T. Fufiwara, J. Crystal Growth, 158, 268 (1996). https://doi.org/10.1016/0022-0248(95)00431-9
  51. S. Massaccesi, S. Sanchez and J. Vedel, J. Electroanal. Chem., 412, 95 (1996). https://doi.org/10.1016/0022-0728(96)04604-9
  52. R. N. Bhattacharya, A. M. Fernandez, M. A. Contreras, J. Keane, A. L. Tennant, K. Ramanathan, J. R. Tuttle, R. N. Noufi and A.M. Hermann, J. Electrochem. Soc., 143, 854 (1996). https://doi.org/10.1149/1.1836548
  53. A. Kampmann, V. Sittinger, J. Rechid and R. Reineke- Koch, Thin Solid Films, 361-362, 309 (2000). https://doi.org/10.1016/S0040-6090(99)00863-9
  54. S. Gopal, C. Viswanathan, M. Thamilselvan, K. Premnazeer, S. K. Narayandass and D. Mangalaraj, Ionics, 10, 300 (2004). https://doi.org/10.1007/BF02382835
  55. S. Gopal, C. Viswanathan, B. Karunagaran, S. K. Narayandas, D. Mangalaraj, and Y. Yi, Cryst. Res. Technol., 40, 557 (2005). https://doi.org/10.1002/crat.200410383
  56. G. Hodes, T. Engelhard, D. Cahen, L. Lawrence, L. L. Kazmerski and C.R. Herrington, Thin Solid Films, 128, 93 (1985). https://doi.org/10.1016/0040-6090(85)90338-4
  57. D. Pottier and G. Maurin, J. Appl. Electrochem., 19, 361 (1989). https://doi.org/10.1007/BF01015237
  58. P. P. Prosini, M. L. Addonizio, A. Antonaia and S. Loreti, Thin Solid Films, 288, 90,(1996). https://doi.org/10.1016/S0040-6090(96)08817-7
  59. S. Nakamura and A. Yamamoto, Sol. Energ. Mater. Sol. Cells, 75, 81 (2003). https://doi.org/10.1016/S0927-0248(02)00097-1
  60. R. N. Bhattacharya and K. Rajeshwar, Solar Cells, 16, 237 (1986). https://doi.org/10.1016/0379-6787(86)90087-6
  61. M. G. Ganchev and K. D. Kochev, Sol. Energ. Mater. Sol. Cells, 31, 163 (1993). https://doi.org/10.1016/0927-0248(93)90048-8
  62. E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova and K. Kochev, Thin Solid Films, 311, 101 (1997). https://doi.org/10.1016/S0040-6090(97)00263-0
  63. F. J. Pern, J. Goral, R. J. Matson, T. A. Gessert and R. Noufi, Solar Cells, 24, 81 (1988). https://doi.org/10.1016/0379-6787(88)90038-5
  64. Y. Ueno, H. Kawai, T. Sugiura and H. Minoura, Thin Solid Films, 157, 159 (1988). https://doi.org/10.1016/0040-6090(88)90356-2
  65. C. Guillen and J. Herrero, Solar Energy Mater., 23, 31 (1991). https://doi.org/10.1016/0165-1633(91)90151-A
  66. C. Guillen and J. Herrero, Thin Solid Films, 195, 137 (1991). https://doi.org/10.1016/0040-6090(91)90266-Z
  67. C. Guillen and J. Herrero, J. Electrochem. Soc., 141, 225 (1994). https://doi.org/10.1149/1.2054688
  68. C. Guillen and J. Herrero, J. Electrochem. Soc., 142, 1834 (1995). https://doi.org/10.1149/1.2044202
  69. C. Guillen and J. Herrero, Sol. Energ. Mater. Sol. Cells, 43, 47 (1996). https://doi.org/10.1016/0927-0248(95)00163-8
  70. Y. Sudo, S. Endo and T. Irie, Jpn. J. Appl. Phys., 32, 1562 (1993). https://doi.org/10.1143/JJAP.32.1562
  71. L. Thouin, S. Massaccesi, S. Sanchez and J. Vedel, J. Electroanal. Chem., 374, 81 (1994). https://doi.org/10.1016/0022-0728(94)03352-8
  72. D. Guimard, P. P. Grand, N. Bodereau, P. Cowache, J. F. Guillemoles, D. Lincot, S. Taunier, M. Ben Farah, P. Mogensen and O. Kerrec, 29th IEEE Photovoltaic Specialists Conference, 692 (2002).
  73. L. Thouin and J. Vedel, J. Electrochem. Soc., 142, 2996 (1995). https://doi.org/10.1149/1.2048675
  74. J. F. Guillemoles, A. Lusson, P. Cowache, S. Massaccesi, J. Vedel and D. Lincot, Adv. Mater., 6, 376 (1994). https://doi.org/10.1002/adma.19940060507
  75. J. F. Guillemoles, P. Cowache, S. Massaccesi, L. Thouin, S. Sanchez, D. Lincot and J. Vedel, Adv. Mater., 6, 379 (1994). https://doi.org/10.1002/adma.19940060508
  76. J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel and D. Lincot, J. Appl. Phys., 79, 7293 (1996). https://doi.org/10.1063/1.361446
  77. J. Vedel, L. Thouin and D. Lincot, J. Electrochem. Soc., 143, 2173 (1996). https://doi.org/10.1149/1.1836977
  78. A. M. Fernandez, P. J. Sebastian, R. N. Bhattacharya, R. N. Noufi, M. A. Contreras and A.M. Hermann, Semicond. Sci. Tech., 11, 964 (1996). https://doi.org/10.1088/0268-1242/11/6/020
  79. M. E. Calixto, P. J. Sebastian, R. N. Bhattacharya and R.N. Noufi, Sol. Energ. Mater. Sol. Cells, 59, 75 (1999). https://doi.org/10.1016/S0927-0248(99)00033-1
  80. O. Solorza-Feria and R. Rivera Noriega, J. Mater Sci., 30, 2616 (1995). https://doi.org/10.1007/BF00362143
  81. E. Ordooez Regil, S. M. Fernandez-Valverde, R. Rivera Noriega and O. Solorza-Feria, J. Mater. Sci., 31, 5347 (1996). https://doi.org/10.1007/BF01159303
  82. S. M. Fernández-Valverde, E. Ordooez Regil, R. Valencia Alvarado, R. Rivera Noriega and O. Solorza- Feria, Int. J. Hydrogen Energy, 22, 581 (1997). https://doi.org/10.1016/S0360-3199(96)00196-6
  83. A. Lopez Alanis, J. R. Vargas Garcia, R. Rivera and S. M. Fernandez Valverde, Int. J. Hydrogen Energy, 27, 143 (2002). https://doi.org/10.1016/S0360-3199(01)00099-4
  84. A. Kampmann, P. Cowache, D. Lincot and J. Vedel, J. Electrochem. Soc., 146, 150 (1999). https://doi.org/10.1149/1.1391578
  85. R. Ugarte, R. Schrebler, R. Cordova, E. A. Dalchiele and H. Gomez, Thin Solid Films, 340, 117 (1999). https://doi.org/10.1016/S0040-6090(98)01361-3
  86. K. T. L. De Silva, W. A. A. Priyantha, J. K. D. S. Jayanetti, B. D. Chithrani, W. Siripala, K. Blake and I. M. Dharmadasa, Thin Solid Films, 382, 158 (2001). https://doi.org/10.1016/S0040-6090(00)01185-8
  87. F. Chraibi, M. Fahoume, A. Ennaoui and J. L. Delplancke, Phys, Stat, Sol. (a), 186, 373 (2001). https://doi.org/10.1002/1521-396X(200108)186:3<373::AID-PSSA373>3.0.CO;2-D
  88. L. Zhang, F. D. Jiang and J. Y. Feng, Sol. Energ. Mater. Sol. Cells, 80, 483 (2003). https://doi.org/10.1016/j.solmat.2003.06.014
  89. J. Araujo, R. Ortíz, A. Lopez-Rivera, J. M. Ortega, M. Montilla and D. Alarcon, J. Solid State Electrochem., 11, 407 (2007).
  90. A. Ihlal, K. Bouabid, D. Soubane, M. Nya, O. Ait- Taleb-Ali, Y. Amira, A. Outzourhit and G. Nouet, Thin Solid Films, 515, 5852 (2007). https://doi.org/10.1016/j.tsf.2006.12.136
  91. E. Chassaing, P. P. Grand, O. Ramdani, J. Vigneron, A. Etcheberry and D. Lincot, J. Electrochem. Soc., 157, D387 (2010). https://doi.org/10.1149/1.3374590
  92. T. Yukawa, K. Kuwabara and K. Koumoto, Thin Solid Films, 286, 151 (1996). https://doi.org/10.1016/S0040-6090(96)08545-8
  93. S. Nakamura and A. Yamamoto, Sol. Energ. Mater. Sol. Cells, 49, 415 (1997). https://doi.org/10.1016/S0927-0248(97)00122-0
  94. T. Yukawa, K. Kuwabara and K. Koumoto, Thin Solid Films, 280, 160 (1996). https://doi.org/10.1016/0040-6090(95)08245-X
  95. T. Ishizaki, N. Saito and A. Fuwa, Surf. Coat. Tech., 182, 156 (2004). https://doi.org/10.1016/j.surfcoat.2003.07.004
  96. G. Mengoli, M. M. Musiani and F. Paolucci, J. Electroanal. Chem., 332, 199 (1992). https://doi.org/10.1016/0022-0728(92)80351-4
  97. L. Ribeaucourt, G. Savidand, D. Lincot and E. Chassaing, Electrochim. Acta, 56, 6628 (2011). https://doi.org/10.1016/j.electacta.2011.05.033
  98. R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, Appl. Phys. Lett., 75, 1431 (1999). https://doi.org/10.1063/1.124716
  99. R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi and J. R. Sites, Thin Solid Films, 361-362, 396 (2000). https://doi.org/10.1016/S0040-6090(99)00809-3
  100. R.N. Bhattacharya and A.M. Fernandez, Sol. Energ. Mater. Sol. Cells, 76, 331 (2003). https://doi.org/10.1016/S0927-0248(02)00285-4
  101. R. N. Bhattacharya, J. Electrochem. Soc., 157, D406 (2010). https://doi.org/10.1149/1.3427514
  102. P. J. Sebastian, M. E. Calixto, R. N. Bhattacharya and R. Noufi, Sol. Energ. Mater. Sol. Cells, 59, 125 (1999). https://doi.org/10.1016/S0927-0248(99)00037-9
  103. Y. P. Fu, R. W. You and K. K. Lew, J. Electrochem. Soc., 156, E133 (2009). https://doi.org/10.1149/1.3158558
  104. Y. Lai, F. Liu, S. Kuang, J. Liu, Z. Zhang, J. Li and Y. Liu, Electrochem. Solid-State Lett., 12, D65 (2009). https://doi.org/10.1149/1.3152338
  105. R. Inguanta, P. Livreri, S. Piazza and C. Sunseri, Electrochem. Solid-State Lett., 13, K22 (2010). https://doi.org/10.1149/1.3274126
  106. R. Diaz, G. San Vicente, J. M. Merino, F. Rueda, P. Ocon and P. Herrasti, J. Mater. Chem., 10, 1623 (2000). https://doi.org/10.1039/b000168f
  107. G. Mengoli, M. M. Musiani, F. Paolucci and M. Gazzano, J. Appl. Electrochem., 21, 863 (1991). https://doi.org/10.1007/BF01042452
  108. G. Mengoli, M. M. Musiani, F. Paolucci and M. Gazzano, J. Appl. Electrochem., 21, 863 (1991). https://doi.org/10.1007/BF01042452
  109. N. R. de Tacconi and K. Rajeshwar, J. Electroanal. Chem., 444, 7 (1998). https://doi.org/10.1016/S0022-0728(97)00533-0
  110. J. Herrero and J. Ortega, Solar Energy Mater., 16, 477 (1987). https://doi.org/10.1016/0165-1633(87)90049-9
  111. T. L. Wade, L. C. Ward, C. B. Maddox, U. Happek and J.L. Stickney, Electrochem. Solid-State Lett., 2, 616 (1999). https://doi.org/10.1149/1.1390925
  112. T. L. Wade, R. Vaidyanathan, U. Happek and J. L. Stickney, J. Electroanal. Chem., 500, 322 (2001). https://doi.org/10.1016/S0022-0728(00)00473-3
  113. R. P. Raffaelle, J. G. Mantovani, R. Friedfeld, S. G. Bailey and S. M. Hubbard, Proceedings of the 26th IEEE PVSC, 559 (1997).
  114. C. Guillen and J. Herrero, J. Electrochem. Soc., 143, 493 (1996). https://doi.org/10.1149/1.1836470
  115. J. Herrero and J. Ortega, Solar Energy Mater., 20, 53 (1990). https://doi.org/10.1016/0165-1633(90)90017-U
  116. T. P. Gujar, V. R. Shinde, J. W. Park, H.K. Lee, K.D. Jung, and O.S. Joo, J. Electrochem. Soc., 155, E131 (2008). https://doi.org/10.1149/1.2957923
  117. R. Friedfeld, R. P. Raffaelle and J. G. Mantovani, Sol. Energ. Mater. Sol. Cells, 58, 375 (1999). https://doi.org/10.1016/S0927-0248(99)00010-0
  118. J. Herrero and J. Ortega, Solar Energy Mater., 17, 357 (1988). https://doi.org/10.1016/0165-1633(88)90017-2
  119. S. Cattarin, M. Musiani, U. Casellato, G. Rossetto, G. Razzini, F. Decker, and B. Scrosati, J. Electrochem. Soc., 142, 1267 (1995). https://doi.org/10.1149/1.2044162
  120. T. S. Dobrovolska, L. Veleva, I. Krastev and A. Zielonka, J. Electrochem. Soc., 152, C137 (2005). https://doi.org/10.1149/1.1859811
  121. T. S. Dobrovolska, I. Krastev and A. Zielonka, J. Appl. Electrochem., 35, 1245 (2005). https://doi.org/10.1007/s10800-005-9036-4
  122. G. A. Peristaya and Y. P. Perelygin, Russ. J. Appl. Chem., 72, 1220 (1999).
  123. G. A. Peristaya and Y. P. Perelygin, Protection of Metals, 36, 294 (2000). https://doi.org/10.1007/BF02758410
  124. Y. N. Sadana, Surf. Tech., 6, 369 (1978). https://doi.org/10.1016/0376-4583(78)90082-1
  125. Y. P. Perelygin, Y. N. Kirilina and A.S Meshcheryakov, Russ. J. Appl. Chem., 83, 165 (2010). https://doi.org/10.1134/S1070427210010325
  126. S. N. Sahu, J. Mater. Sci. Lett., 8, 533 (1989). https://doi.org/10.1007/BF00720288
  127. Y. N. Sadana and J. P. Singh, Plating and Surface Finishing, 72, 64 (1985).
  128. Y. N. Sadana and Z. Z. Wang, Surf. Tech., 25, 17 (1985). https://doi.org/10.1016/0376-4583(85)90044-5
  129. S. Aksu, J. Wang, and B.M. Basol, Electrochem. Solid-State Lett., 12, D33 (2009). https://doi.org/10.1149/1.3079481
  130. T. Ishizaki, N. Saito and A. Fuwa, Materials Transactions JIM, 40, 867 (1999). https://doi.org/10.2320/matertrans1989.40.867
  131. S. N. Sahu, R. D. L. Kristensen and D. Haneman, Solar Energy Mater., 18, 385 (1989). https://doi.org/10.1016/0165-1633(89)90063-4
  132. K. K. Mishra and K. Rajeshwar, J. Electroanal. Chem., 271, 279 (1989). https://doi.org/10.1016/0022-0728(89)80082-8
  133. P. Garg, A. Garg and J.C. Garg, Thin Solid Films, 206, 236 (1991). https://doi.org/10.1016/0040-6090(91)90428-Z
  134. T. L. Chu, S. S. Chu, S. C. Lin and J. Yue, J. Electrochem. Soc., 131, 2182 (1984). https://doi.org/10.1149/1.2116044
  135. Q. Huang, K. Reuter, S. Amhed, L. Deliglanni, L. T. Romankiw, S. Jaime, P. P. Grand and V. Charrier, J. Electrochem. Soc., 158, D57 (2011). https://doi.org/10.1149/1.3518440
  136. Q. Huang, B. C. Baker-O'Neal, J. J. Kelly, P. Broekmann, A. Wirth, C. Emnet, M. Martin, M. Hahn, A. Wagner and D. Mayer, Electrochem. Solid-State Lett., 12, D27 (2009). https://doi.org/10.1149/1.3078074
  137. V. M. Kozlov, V. Agrigento, G. Mussati and L.P. Bicelli, J. Alloys Compd., 288, 255 (1999). https://doi.org/10.1016/S0925-8388(99)00136-X
  138. V. K. Kapur, B. M. Basol and E. S. Tseng, Solar Cells, 21, 65 (1987). https://doi.org/10.1016/0379-6787(87)90105-0
  139. R. N. Bhattacharya, M. K. Oh and Y. Kim, Sol. Energ. Mater. Sol. Cells, 98, 198 (2012). https://doi.org/10.1016/j.solmat.2011.10.026
  140. V. M. Kozlov, V. Agrigento, D. Bontempi, S. Canegallo, C. Moraitou, A. Toussimi, L.P. Bicelli and G. Serravalle, J. Alloys Compd., 259, 234 (1997). https://doi.org/10.1016/S0925-8388(97)00096-0
  141. S. Canegallo, V. Demeneopoulos, L. P. Bicelli and G. Serravalle, J. Alloy Compd., 216, 149 (1994). https://doi.org/10.1016/0925-8388(94)91057-X
  142. S. Canegallo, V. Demeneopoulos, L. P. Bicelli and G. Serravalle, J. Alloy Compd., 228, 23 (1995). https://doi.org/10.1016/0925-8388(95)01668-6
  143. S. Canegallo, V. Agrigento, C. Moraitou, A. Toussimi, L. P. Bicelli and G. Serravalle, J. Alloy Compd., 234, 211 (1996). https://doi.org/10.1016/0925-8388(95)02115-9
  144. S. M. Rabchynski, D. K. Ivanou and E.A. Streltsov, Electrochem. Comm., 6, 1051 (2004). https://doi.org/10.1016/j.elecom.2004.07.019
  145. C.H. Sonu and T.J. O'Keefe, Mater. Charact., 33, 311 (1994). https://doi.org/10.1016/1044-5803(94)90135-X
  146. F. Liu, C. Huang, Y. Lai, A. Zhang, J. Li and Y. Liu, J. Alloys Compd., 509, L129 (2011). https://doi.org/10.1016/j.jallcom.2010.12.031
  147. S. Phok, S. Rajaputra and V.P. Singh, Nanotechnology, 18, 475601 (2007). https://doi.org/10.1088/0957-4484/18/47/475601
  148. M. Kemell, M. Ritala, H. Saloniemi, M. Leskelä, T. Sajavaara and E. Rauhala, J. Electrochem. Soc., 147, 1080 (2000). https://doi.org/10.1149/1.1393317
  149. M. Kemell, H. Saloniemi, M. Ritala and M. Leskela, J. Electrochem. Soc., 148, C110 (2001). https://doi.org/10.1149/1.1342177
  150. M. Kemell, M. Ritala and M. Leskela, J. Mater. Chem., 11, 668 (2001). https://doi.org/10.1039/b003520n
  151. T. J. Whang, M. T. Hsieh, Y. C. Kao and S.J. Lee, Appl. Surf. Sci., 255, 4600 (2009). https://doi.org/10.1016/j.apsusc.2008.11.081
  152. T. J. Whang, M. T. Hsieh, Y. C. Kao and S. J. Lee, Appl. Surf. Sci., 257, 1457 (2010). https://doi.org/10.1016/j.apsusc.2010.08.072
  153. T. P. Gujar, V. R. Shinde, J. W. Park, H. K. Lee, K. D. Jung and O.S. Joo, J. Electrochem. Soc., 156, E8 (2009). https://doi.org/10.1149/1.3005576
  154. T. S. Dobrovolska, I. Krastev and A. Zielonka, Russ. J. Electrochem., 44, 676 (2008). https://doi.org/10.1134/S1023193508060074

Cited by

  1. CIS and CIGS nanomaterials prepared by solvothermal method and their spectral properties vol.49, pp.12, 2014, https://doi.org/10.1002/crat.201400214
  2. Recovery of ITO nanopowder from a waste ITO target by a simple co-precipitation method vol.6, pp.84, 2016, https://doi.org/10.1039/C6RA13990F