DOI QR코드

DOI QR Code

LPCVD로 형성된 실리콘 나노점의 전계방출 특성

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique

  • 안승만 (서울시립대학교 나노과학기술학과) ;
  • 임태경 (서울시립대학교 나노과학기술학과) ;
  • 이경수 (서울시립대학교 나노과학기술학과) ;
  • 김정호 (서울시립대학교 나노과학기술학과) ;
  • 김은겸 (서울시립대학교 나노공학과) ;
  • 박경완 (서울시립대학교 나노과학기술학과, 나노공학과)
  • An, Seungman (Department of Nano Science and Technology, University of Seoul) ;
  • Yim, Taekyung (Department of Nano Science and Technology, University of Seoul) ;
  • Lee, Kyungsu (Department of Nano Science and Technology, University of Seoul) ;
  • Kim, Jeongho (Department of Nano Science and Technology, University of Seoul) ;
  • Kim, Eunkyeom (Department of Nano Engineering, University of Seoul) ;
  • Park, Kyoungwan (Department of Nano Science and Technology, Department of Nano Engineering, University of Seoul)
  • 투고 : 2010.12.10
  • 발행 : 2011.04.25

초록

We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996). https://doi.org/10.1063/1.116085
  2. M. Saitoh, E. Nagata, and T. Hiramoto, Appl. Phys. Lett. 82, 1787 (2003). https://doi.org/10.1063/1.1562343
  3. S. S. Kim, W.-J. Cho, C.-G. Ahn, K. Im, J.-H. Yang, I.-B. Baek, S. Lee, and K.S. Lim, Appl. Phys. Lett. 88, 223502 (2006). https://doi.org/10.1063/1.2208268
  4. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000). https://doi.org/10.1038/35044012
  5. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, Appl. Phys. Lett. 83, 5479 (2003). https://doi.org/10.1063/1.1637720
  6. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, Appl. Phys. Lett. 84, 2163 (2004). https://doi.org/10.1063/1.1687458
  7. J. D. Carey and S. R. P. Silva, Solid-State Electronics 45, 1017 (2001). https://doi.org/10.1016/S0038-1101(00)00215-X
  8. Y. F. Tang, S. R. P. Silva, B. O. Boskovic, J. M. Shannon, and M. J. Rose, Appl. Phys. Lett. 80, 4154 (2002). https://doi.org/10.1063/1.1482141
  9. Jun Xu, Jiang Zhou, Yao Yao, Zhanhong Cen, Fenqi Song, Ling Xu, Jianguo Wan, and Kunji Chen, Solid State Comm. 145, 443 (2008). https://doi.org/10.1016/j.ssc.2007.12.019
  10. K. L. Ng, J. Yuan, J. T. Cheung, and K. W. Cheah, Solid State Comm. 123, 205 (2002). https://doi.org/10.1016/S0038-1098(02)00287-9
  11. Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, Appl. Phys. Lett. 86, 133112 (2005). https://doi.org/10.1063/1.1883316
  12. I. Brodie and J. J. Muray, The Physics of Micro/Nano-Fabrication, p436, Plenum Press, New York (1992).
  13. S. M. Sze, Physics of Semiconductor devices, p402, John Wiley & Sons, New York (1981).
  14. J. H. Kim, H. S. Lee, J. C. Goak, Y. H. Seo, K. B. Kim, K. S. Park, and N. S. Lee, Appl. Surf. Sci. 256, 2636 (2010). https://doi.org/10.1016/j.apsusc.2009.11.010
  15. K. Ahn, H. Jang, S. Lyu, H. Lee, N. Lee, M. Han, Y. Park, W. Hong, K. Park, and J. Sok, Kor. J. Met. Mater. 49, 79 (2011). https://doi.org/10.3365/KJMM.2011.49.1.079