• Title/Summary/Keyword: silicon nanodots

Search Result 5, Processing Time 0.021 seconds

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique (LPCVD로 형성된 실리콘 나노점의 전계방출 특성)

  • An, Seungman;Yim, Taekyung;Lee, Kyungsu;Kim, Jeongho;Kim, Eunkyeom;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

Plasmonic gold nanodot array optimization on a-Si thin film solar cells using anodic aluminum oxide templates (비정질 실리콘 박막 태양전지 효율 향상을 위한 양극산화 알루미늄 템플레이트을 이용한 플라즈모닉 금 나노점 배열 최적화)

  • Bae, Kyuyoung;Kim, Kyoungsik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.67-71
    • /
    • 2013
  • The fabrication method of plasmonic nanodots on silicon substrate has been developed to improve the efficiency of thin film solar cells. Nanoscale metallic nanodots arrays are fabricated by anodic aluminum oxide (AAO) template mask which can have different structural parameters by varying anodization conditions. In this paper, the structural parameters of gold nanodots, which can be controlled by the diverse structures of AAO template mask, are investigated to enhance the optical properties of a-Si thin film solar cells. It is found that optical properties of the thin film solar cells are improved by finding optimization values of the structural parameters of the gold nanodot array.

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.98-102
    • /
    • 2016
  • The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Formation of Si Nanodot by Using SiNx Thin Films (SiNx 박막을 이용한 Si Nanodot의 형성)

  • Lee, Jang Woo;Park, Ik Hyun;Shin, Byul;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.768-771
    • /
    • 2005
  • The deposition of silicon nitride ($SiN_x$) thin films was carried out on $SiO_2/Si$ substrate at room temperature by reactive dc magnetron sputtering. The analysis of deposited $SiN_x$ films using x-ray photoelectron spectroscopy indicated that the composition of $SiN_x$ films was Si-rich. The deposited $SiN_x$ thin films were annealed by varying annealing temperature and time. X-ray diffraction (XRD) analysis was performed in order to examine the crystallization of Si in $SiN_x$ thin films. The optical and electrical properties of $SiN_x$ thin films were measured for the observation of Si nanodot. As a result, we observed the XRD peaks that might be the Si crystals. As the annealing time and annealing temperature increased, the photoluminescence intensity of $SiN_x$ films gradually increased. The capacitance-voltage characteristics of $SiN_x$ film measured before and after annealing indicated that the trap effect of electrons or holes occurred due to the existence Si nanodots in the $SiN_x$ thin films.