DOI QR코드

DOI QR Code

Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials

미래형 원자로 구조 재료용 Gr. 91 강의 장시간 크리프 강도의 신뢰성 예측

  • Kim, Woo-Gon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jae-Young (Mechanical & Automotive Engineering Department, Pukyong National University) ;
  • Yin, Song-Nan (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dae-Whan (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Seon-Jin (Mechanical & Automotive Engineering Department, Pukyong National University)
  • 김우곤 (한국원자력연구원 원자력재료개발부) ;
  • 박재영 (부경대학교 기계 자동차 공학과) ;
  • 윤송남 (한국원자력연구원 원자력재료개발부) ;
  • 김대환 (한국원자력연구원 원자력재료개발부) ;
  • 박지연 (한국원자력연구원 원자력재료개발부) ;
  • 김선진 (부경대학교 기계 자동차 공학과)
  • Received : 2011.01.24
  • Published : 2011.04.25

Abstract

This paper focuses on reliability prediction of long-term creep strength for Modified 9Cr-1Mo steel (Gr. 91) which is considered as one of the structural materials of next generation reactor systems. A "Z-parameter" method was introduced to describe the magnitude of standard deviation of creep rupture data to the master curve which can be plotted by log stress vs. The larson-Miller parameter (LMP). Statistical analysis showed that the scattering of the Z-parameter for the Gr. 91 steel well followed normal distribution. Using this normal distribution of the Z-parameter, the various reliability curves for creep strength design, such as stress-time temperature parameter reliability curves (${\sigma}$-TTP-R curves), stress-rupture time-reliability curves (${\sigma}-t_{r}-R$ curves), and allowable stress-temperature- reliability curves ([${\sigma}$]-T-R curves) were reasonably drawn, and their results are discussed.

Keywords

Acknowledgement

Grant : 미래형원자로시스템

Supported by : 한국연구재단

References

  1. W. G, Kim and S. N. Yin, Proc. of K-PVP, p.75, Anmyeondo, Korea (2010).
  2. W. G, Kim, S. N. Yin, and G. H. Koo, Met. Mater. Int. 15, 727 (2009). https://doi.org/10.1007/s12540-009-0727-3
  3. W. G, Kim, S. N. Yin, S. H. Kim, W. S. Ryu, C. B. Lee, and S. J. Kim, Met. Mater. Int 15, 559 (2009). https://doi.org/10.1007/s12540-009-0559-9
  4. K. Kimura, H. Kushima, K. Sawada, and Y. Toda, Proc. of CREEP8, CREEP 2007-26406, Texas, USA (2007).
  5. K. Maruyama and K. Yoshimi, Proc. of CREEP8, CREEP 2007-26150, Texas, USA (2007).
  6. F. Masuyama and T. Tokunaga, Proc. 2nd ECCC Creep Conf. (eds. I.A. Shibli and S.R. Holdsworth), p.19, Zurich, Switzerland (2009).
  7. F. R. Larson and J. Miller, Trans. ASME 74, 765 (1952).
  8. B. Wilshire and P. J. Scharning, Materials Science and Technology 24, 1 (2008). https://doi.org/10.1179/174328407X245779
  9. R. W. Evans, J. D. Parker, and B. Wilshire, International Journal of Pressure Vessels and Piping 50, 147 (1992). https://doi.org/10.1016/0308-0161(92)90035-E
  10. M. Prager, Development of MPC Omega Method for Life Assessment in the Creep Range, The Materials Properties Council, INC (1994).
  11. M. Prager, J. of Pressure Vessel Technology-Transaction of ASME 122, 273 (2000). https://doi.org/10.1115/1.556184
  12. W. G. Kim, S. Y. Yin, Y. W. Kim, and J. W. Chang, Engineering Fracture Mechanics 75, 4985 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.017
  13. K. Maruyama and H. Oikawa, Scripta Metallurgica 21, 233 (1987). https://doi.org/10.1016/0036-9748(87)90441-8
  14. H. Wolf, M. D. Mathew, and S.L. Mannan, Mater. Sci. Eng. A 159, 199 (1992). https://doi.org/10.1016/0921-5093(92)90290-H
  15. A. K. Koul and R. Castillo, Mater. Sci. Eng. A 138, 213 (1991). https://doi.org/10.1016/0921-5093(91)90690-O
  16. S. G. R. Brown, R. W. Evans, and B. Wilshire, Scripta Metallurgica 20, 855 (1986). https://doi.org/10.1016/0036-9748(86)90454-0
  17. S. G. R. Brown, R.W. Evans, and B. Wilshire, International Journal of Pressure Vessels and Piping 24, 251 (1986). https://doi.org/10.1016/0308-0161(86)90125-0
  18. S. G. R. Brown, R. W. Evans, and B. Wilshire, Scripta Metallurgica 21, 239 (1987). https://doi.org/10.1016/0036-9748(87)90442-X
  19. Y. Kurata and H. Utsumi, Acta Metallurgica Sinica 11, 397 (1998).
  20. J. Zhao, D. Li, J. Zhang, W. Feng, and Y. Fang, International Journal of Pressure Vessels and Piping 86, 599 (2009). https://doi.org/10.1016/j.ijpvp.2009.04.004
  21. J. Zhao, D. Li, and Y. Fang, Proc. 2nd ECCC Creep Conference (eds. I.A. Shibli and S.R. Holdsworth), p.778, Zurich, Switzerland (2009).
  22. B. Wilshire and M. R. Bache, Proc. 2nd ECCC Creep Conference (eds. I.A. Shibli and S.R. Holdsworth), p.44, Zurich, Switzerland (2009).
  23. K. Kimura, Proc. ECCC Creep Conference (eds. I.A. Shibli, S.R. Holdsworth, and G. Merckling), p.1009 London, UK (2005).
  24. K. Haarmann, J. C. Vaillant, B. Vandenberghe, W. Bendick, and A. Arbab, The T91/P91 Book, 2nd ed., p.27, Vallourec & Mannesmann Tubes (2002).