• Title/Summary/Keyword: Z-parameter

Search Result 311, Processing Time 0.034 seconds

Measuring the matter energy density and Hubble parameter from Large Scale Structure

  • Lee, Seokcheon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2013
  • We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter $\Omo$ (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached $z >3.5$. One can also investigate the evolution of the Hubble parameter without any prior on the value of $H_0$ (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate $f \sigma_8$. However, this method requires the high $z$ ($z >3.5$) measurement of the growth rate in order to get the less than 5% errors on the measurements of $H(z)$ at $z \leq 1.2$ with the redshift bin $\Delta z = 0.2$. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.

  • PDF

Measurement and Analysis of Gate Finger Number Dependence of Input Resistance for Sub-micron MOSFETs (Sub-micron MOSFET을 위한 입력 저항의 게이트 핑거 수 종속성 측정 및 분석)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.59-65
    • /
    • 2014
  • Two input resistances converted from $S_{11}$-parameter and $Z_{11}$-parameter of MOSFETs with various gate finger numbers Nf were measured in low frequency region. The 1/Nf dependent input resistance from $S_{11}$-parameter exhibits much lower values than that from $Z_{11}$-parameter in the range of $Nf{\leq}64$. This 1/Nf dependence was theoretically verified by using Nf dependent nonlinear equation derived from a MOSFET equivalent circuit.

Modal Analysis of One Dimensional Distributed Parameter Systems by Using the Digital Modeling Technique (디지털 모델링 기법에 의한 1차원 연속계의 모드 해석)

  • 홍성욱;조종환
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.103-112
    • /
    • 1999
  • A new modeling and analysis technique for one-dimensional distributed parameter systems is presented. First. discretized equations of motion in Laplace domain are derived by applying discretization methods for partial differential equations of a one-dimensional structure with respect to spatial coordinate. Secondly. the z and inverse z transformations are applied to the discretized equations of motion for obtaining a dynamic matrix for a uniform element. Four different discretization methods are tested with an example. Finally, taking infinite on the number of step for a uniform element leads to an exact dynamic matrix for the uniform element. A generalized modal analysis procedure for eigenvalue analysis and modal expansion is also presented. The resulting element dynamic matrix is tested with a numerical example. Another application example is provided to demonstrate the applicability of the proposed method.

  • PDF

The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet (충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.

Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials (미래형 원자로 구조 재료용 Gr. 91 강의 장시간 크리프 강도의 신뢰성 예측)

  • Kim, Woo-Gon;Park, Jae-Young;Yin, Song-Nan;Kim, Dae-Whan;Park, Ji-Yeon;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.275-280
    • /
    • 2011
  • This paper focuses on reliability prediction of long-term creep strength for Modified 9Cr-1Mo steel (Gr. 91) which is considered as one of the structural materials of next generation reactor systems. A "Z-parameter" method was introduced to describe the magnitude of standard deviation of creep rupture data to the master curve which can be plotted by log stress vs. The larson-Miller parameter (LMP). Statistical analysis showed that the scattering of the Z-parameter for the Gr. 91 steel well followed normal distribution. Using this normal distribution of the Z-parameter, the various reliability curves for creep strength design, such as stress-time temperature parameter reliability curves (${\sigma}$-TTP-R curves), stress-rupture time-reliability curves (${\sigma}-t_{r}-R$ curves), and allowable stress-temperature- reliability curves ([${\sigma}$]-T-R curves) were reasonably drawn, and their results are discussed.

Evidence for galaxy dynamics tracing background cosmology below the de Sitter scale of acceleration

  • van Putten, Maurice H.P.M
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.55.5-56
    • /
    • 2017
  • Galaxy dynamics probes weak gravity at accelerations below the de Sitter scale of acceleration adS = cH, where c is the velocity of light and H is the Hubble parameter. Low and high redshift galaxies hereby offer a novel probe of weak gravity in an evolving cosmology, satisfying H(z) = H0(1 + A(6z + 12z^2 +12z^3+ 6z^4+ (6/5)z^5)/(1 + z) with baryonic matter content A sans tension to H0 in surveys of the Local Universe. Galaxy rotation curves show anomalous galaxy dynamics in weak gravity aN < adS across a transition radius r beyond about 5 kpc for galaxy mass of 1e11 solar mass. where aN is the Newtonian acceleration based on baryonic matter content. We identify this behavior with a holographic origin of inertia from entanglement entropy, that introduces a C0 onset across aN=adS with asymptotic behavior described by a Milgrom parameter satisfying a0=omega/(2pi), where omega=sqrt(1-q)H is a fundamental eigenfrequency of the cosmological horizon. Extending an earlier confrontation with data covering 0.003 < aN/adS < 1 at redshift z about zero in Lellie et al. (2016), the modest anomalous behavior in the Genzel et al. sample at redshifts 0.854 < z <2.282 is found to be mostly due to clustering 0.36 < aN/adS < 1 close to the C0 onset to weak gravity and an increase of up to 65% in a0.

  • PDF

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

An Analytic Study On the Mutual Relation between Method(1) and (2) of ZIEGLER-NICHOLS Control Parameter Tuning (지글러-니콜스 제어파라미터 조정법(1),(2)의 상호 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.112-119
    • /
    • 2001
  • Parameter tuning methods by Ziegler-Nickels for control systems are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between methods of Z-N(1) and Z-N(2), or how Z-N(1) method can be originated from Z-N(2) method by analyzing one loop control system of P or PI controller and time delay process. The formulas of Z-N(1) consist of process parameters, L(time delay), $K_m$(gain) and $T_m$(time constant), but Z-N(2) method is based only on the ultimate gain $K_u$ and the ultimate period $T_u$ acquired normally by practical trial without any parameters of Z-N(1). In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into the formulas composed of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula. And a model system is adopted to compare the approximated formula to Z-N(1) and Z-N(2) methods, the results of which show the effectiveness of the proposals.

  • PDF

Prediction of Mean Cutting Force in Ball-end Milling using 2-map and Cutting Parameter (Z-map과 절삭계수를 이용한 볼엔드밀의 평균절삭력 예측)

  • 황인길;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.179-184
    • /
    • 1995
  • A new cutting parameter is defined in the spherical part of ball end-mill cutter. A series of slot cutting experiments were carried out to obtain the cutting parameter. The cutter contact area is expressed as the grid posiotion in the cutting plane using Z map. The cutting forces in each grid are calculated and saved as force map, prior to the average cutting forces calculation. The cutting force, in the arbitrary cutting area, can be easily calculated by summing up the cutting forces of the engaged grid in the force map. This model was verified in the inclined surface cutting by cutting test of a cylindrical part.

  • PDF