DOI QR코드

DOI QR Code

SEQUENCE SPACES OF OPERATORS ON l2

  • Rakbud, Jitti (Department of Mathematics Faculty of Science Silpakorn University) ;
  • Ong, Sing-Cheong (Department of Mathematics Central Michigan University)
  • Received : 2009.08.30
  • Published : 2011.11.01

Abstract

In this paper, we define some new sequence spaces of infinite matrices regarded as operators on $l_2$ by using algebraic properties of such the matrices under the Schur product multiplication. Some of their basic properties as well as duality and preduality are discussed.

Keywords

References

  1. G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603-639. https://doi.org/10.1215/S0012-7094-77-04426-X
  2. P. Chaisuriya and S.-C. Ong, Absolute Schur algebras and unbounded matrices, SIAM J. Matrix Anal. Appl. 20 (1999), no. 3, 596-605. https://doi.org/10.1137/S0895479897330005
  3. I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), no. 1, 245-265. https://doi.org/10.1016/0022-247X(76)90248-1
  4. L. Livshits, S.-C. Ong, and S.-W. Wang, Banach space duality of absolute Schur algebras, Integral Equations Operator Theory 41 (2001), no. 3, 343-359.
  5. S.-C. Ong, On the Schur multiplier norm of matrices, Linear Algebra Appl. 56 (1984), 45-55. https://doi.org/10.1016/0024-3795(84)90112-5
  6. J. Schur, Bemerkungen Theorie der beschranken Bilinearformen mit unendlich vielen Verander lichen, J. Reine Angew. Math. 140 (1911), 1-28.

Cited by

  1. Spectrum localizations for matrix operators on lp spaces vol.249, 2014, https://doi.org/10.1016/j.amc.2014.10.071
  2. Duality decompositions of some matrix sequence spaces pp.1793-7183, 2018, https://doi.org/10.1142/S1793557119500487