References
- V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.
- M. A. Aves, D. F. Griffiths, and D. J. Higham, Does error control suppress spuriosity?, SIAM J. Numer. Anal. 34 (1997), no. 2, 756-778. https://doi.org/10.1137/S0036142994276980
- R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, Boul-der, CO, 2003.
- B. M. Garay and K. Lee, Attractors under discretizations with variable stepsize, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 827-841. https://doi.org/10.3934/dcds.2005.13.827
- D. F. Griffiths, P. K. Sweby, and H. C. Yee, On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal. 12 (1992), no. 3, 319-338. https://doi.org/10.1093/imanum/12.3.319
- J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bi-furcations of Vector Fields, Springer, New York, 1983.
- A. Guillou and J. L. Soule, La resolution numerique des problemes differentiels aux conditions initiales par des methodes de collocation, Rev. Francaise Informat. Recherche Operationnelle 3 (1969), Ser. R-3, 17-44.
- E. Hairer, A. Iserles, and J. M. Sanz-Serna, Equilibria of Runge-Kutta methods, Numer. Math. 58 (1990), no. 3, 243-254. https://doi.org/10.1007/BF01385623
- E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Non-stiff Problems, Springer, New York, 2000.
- D. J. Higham, A. R. Humphries, and R. J.Wain, Phase space error control for dynamical systems, SIAM J. Sci. Comput. 21 (2000), no. 6, 2275-2294. https://doi.org/10.1137/S1064827597331400
- Y. Huang and X. Zou, Dynamics in numerics: on two different finite difference schemes for ODEs, J. Comput. Appl. Math. 181 (2004), no. 2, 388-403.
- A. R. Humphries, Spurious solutions of numerical methods for initial value problems, IMA J. Numer. Anal. 13 (1993), no. 2, 263-290. https://doi.org/10.1093/imanum/13.2.263
- A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal. 10 (1990), no. 1, 1-30. https://doi.org/10.1093/imanum/10.1.1
- A. Iserles, T. Peplov, and A. M. Stuart, A unified approach to spurious solutions intro- duced by time discretisation. I. Basic theory, SIAM J. Numer. Anal. 28 (1991), no. 6, 1723-1751. https://doi.org/10.1137/0728086
- N. Joshi, Singularity analysis and integrability for discrete dynamical systems, J. Math. Anal. Appl. 184 (1994), no. 3, 573-584. https://doi.org/10.1006/jmaa.1994.1222
- Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 2004.
- H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, BIT 40 (2000), no. 2, 314-335. https://doi.org/10.1023/A:1022395124683
- H. Lamba and A. Stuart, Convergence results for the MATLAB ODE23 routine, BIT 38 (1998), no. 4, 751-780. https://doi.org/10.1007/BF02510413
- J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991.
- F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordi-nary differential equations, SIAM J. Numer. Anal. 4 (1967), 433-445. https://doi.org/10.1137/0704038
- Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dy-namical systems, Comm. Math. Phys. 74 (1980), no. 2, 189-197. https://doi.org/10.1007/BF01197757
- O. Stein, Bifurcations of hyperbolic fixed points for explicit Runge-Kutta methods, IMA J. Numer. Anal. 17 (1997), no. 2, 151-175. https://doi.org/10.1093/imanum/17.2.151
- A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cam-bridge University Press, Cambridge, 1996.
- H. C. Yee and P. K. Sweby, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations II, RNR Technical Report RNR-92-008, 1992.
- H. C. Yee and P. K. Sweby, Global asymptotic behavior of iterative implicit schemes, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), no. 6, 1579-1611. https://doi.org/10.1142/S0218127494001210
- H. C. Yee and P. K. Sweby, Dynamics of numerics and spurious behaviors in CFD computations, RIACS Technical Report 97.06, 1997.
- H. C. Yee, P. K. Sweby, and D. F. Griffiths, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics, J. Comput. Phys. 97 (1991), no. 2, 249-310. https://doi.org/10.1016/0021-9991(91)90001-2
Cited by
- Various Closeness Results in Discretized Bifurcations vol.20, pp.3, 2012, https://doi.org/10.1007/s12591-012-0135-5
- Dynamics of Numerics of Nonautonomous Equations with Periodic Solutions: Introducing the Numerical Floquet Theory vol.2013, 2013, https://doi.org/10.1155/2013/645345
- Discretizing the transcritical and pitchfork bifurcations – conjugacy results vol.21, pp.3, 2015, https://doi.org/10.1080/10236198.2014.992786