DOI QR코드

DOI QR Code

TRANSFORMATION OF LOCAL BIFURCATIONS UNDER COLLOCATION METHODS

  • Foster, Andrew (Department of Mathematics and Statistics Memorial University of Newfoundland) ;
  • Khumalo, Melusi (Department of Mathematics University of Johannesburg)
  • Received : 2009.07.17
  • Published : 2011.11.01

Abstract

Numerical schemes are routinely used to predict the behavior of continuous dynamical systems. All such schemes transform flows into maps, which can possess dynamical behavior deviating from their continuous counterparts. Here the common bifurcations of scalar dynamical systems are transformed under a class of algorithms known as linearized one-point collocation methods. Through the use of normal forms, we prove that each such bifurcation in an originating flow gives rise to an exactly corresponding one in its discretization. The conditions for spurious period doubling behavior under this class of algorithm are derived. We discuss the global behavioral consequences of a singular set induced by the discretizing methods, including loss of monotonicity of solutions, intermittency, and distortion of attractor basins.

Keywords

References

  1. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.
  2. M. A. Aves, D. F. Griffiths, and D. J. Higham, Does error control suppress spuriosity?, SIAM J. Numer. Anal. 34 (1997), no. 2, 756-778. https://doi.org/10.1137/S0036142994276980
  3. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Westview Press, Boul-der, CO, 2003.
  4. B. M. Garay and K. Lee, Attractors under discretizations with variable stepsize, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 827-841. https://doi.org/10.3934/dcds.2005.13.827
  5. D. F. Griffiths, P. K. Sweby, and H. C. Yee, On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal. 12 (1992), no. 3, 319-338. https://doi.org/10.1093/imanum/12.3.319
  6. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bi-furcations of Vector Fields, Springer, New York, 1983.
  7. A. Guillou and J. L. Soule, La resolution numerique des problemes differentiels aux conditions initiales par des methodes de collocation, Rev. Francaise Informat. Recherche Operationnelle 3 (1969), Ser. R-3, 17-44.
  8. E. Hairer, A. Iserles, and J. M. Sanz-Serna, Equilibria of Runge-Kutta methods, Numer. Math. 58 (1990), no. 3, 243-254. https://doi.org/10.1007/BF01385623
  9. E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Non-stiff Problems, Springer, New York, 2000.
  10. D. J. Higham, A. R. Humphries, and R. J.Wain, Phase space error control for dynamical systems, SIAM J. Sci. Comput. 21 (2000), no. 6, 2275-2294. https://doi.org/10.1137/S1064827597331400
  11. Y. Huang and X. Zou, Dynamics in numerics: on two different finite difference schemes for ODEs, J. Comput. Appl. Math. 181 (2004), no. 2, 388-403.
  12. A. R. Humphries, Spurious solutions of numerical methods for initial value problems, IMA J. Numer. Anal. 13 (1993), no. 2, 263-290. https://doi.org/10.1093/imanum/13.2.263
  13. A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal. 10 (1990), no. 1, 1-30. https://doi.org/10.1093/imanum/10.1.1
  14. A. Iserles, T. Peplov, and A. M. Stuart, A unified approach to spurious solutions intro- duced by time discretisation. I. Basic theory, SIAM J. Numer. Anal. 28 (1991), no. 6, 1723-1751. https://doi.org/10.1137/0728086
  15. N. Joshi, Singularity analysis and integrability for discrete dynamical systems, J. Math. Anal. Appl. 184 (1994), no. 3, 573-584. https://doi.org/10.1006/jmaa.1994.1222
  16. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 2004.
  17. H. Lamba, Dynamical systems and adaptive timestepping in ODE solvers, BIT 40 (2000), no. 2, 314-335. https://doi.org/10.1023/A:1022395124683
  18. H. Lamba and A. Stuart, Convergence results for the MATLAB ODE23 routine, BIT 38 (1998), no. 4, 751-780. https://doi.org/10.1007/BF02510413
  19. J. D. Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Ltd., Chichester, 1991.
  20. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordi-nary differential equations, SIAM J. Numer. Anal. 4 (1967), 433-445. https://doi.org/10.1137/0704038
  21. Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dy-namical systems, Comm. Math. Phys. 74 (1980), no. 2, 189-197. https://doi.org/10.1007/BF01197757
  22. O. Stein, Bifurcations of hyperbolic fixed points for explicit Runge-Kutta methods, IMA J. Numer. Anal. 17 (1997), no. 2, 151-175. https://doi.org/10.1093/imanum/17.2.151
  23. A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cam-bridge University Press, Cambridge, 1996.
  24. H. C. Yee and P. K. Sweby, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations II, RNR Technical Report RNR-92-008, 1992.
  25. H. C. Yee and P. K. Sweby, Global asymptotic behavior of iterative implicit schemes, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), no. 6, 1579-1611. https://doi.org/10.1142/S0218127494001210
  26. H. C. Yee and P. K. Sweby, Dynamics of numerics and spurious behaviors in CFD computations, RIACS Technical Report 97.06, 1997.
  27. H. C. Yee, P. K. Sweby, and D. F. Griffiths, Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics, J. Comput. Phys. 97 (1991), no. 2, 249-310. https://doi.org/10.1016/0021-9991(91)90001-2

Cited by

  1. Various Closeness Results in Discretized Bifurcations vol.20, pp.3, 2012, https://doi.org/10.1007/s12591-012-0135-5
  2. Dynamics of Numerics of Nonautonomous Equations with Periodic Solutions: Introducing the Numerical Floquet Theory vol.2013, 2013, https://doi.org/10.1155/2013/645345
  3. Discretizing the transcritical and pitchfork bifurcations – conjugacy results vol.21, pp.3, 2015, https://doi.org/10.1080/10236198.2014.992786