DOI QR코드

DOI QR Code

Reduction Behavior of MoO3 to MoO2 by Ar+H2 Gas Mixture

Ar+H2 혼합(混合)가스에 의한 MoO3의 MoO2로의 환원거동(還元擧動)

  • Sohn, Ho-Sang (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Yi, Hyang-Jun (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Park, Jong-Il (Research institute of Industrial Science & Technology(RlST))
  • 손호상 (경북대학교 금속신소재공학과) ;
  • 이향준 (경북대학교 금속신소재공학과) ;
  • 박종일 (포항산업과학기술연구원)
  • Received : 2011.06.29
  • Accepted : 2011.08.16
  • Published : 2011.08.31

Abstract

$MoO_3$ powders were reduced to $MoO_2$ under Ar+$H_2$ gas mixture in a tubular furnace at temperature range 723~873 K. Reaction rate was quantitatively deduced by measuring relative humidity of off gas. Observed reaction rate increased significantly with hydrogen partial pressure and reaction temperature and the rate of $H_2O$ evolution increased drastically during the initial period of reduction. As reduction proceeded, however, $H_2O$ partial pressure decreased noticeably. During the initial period of the reduction, a linear relationship for time dependence of the reduction fraction was observed. The activation energy for the reduction of $MoO_3$ to $MoO_2$was 73.56 kJ/mol during the initial period of reduction.

$MoO_3$ 분말을 723 K ~ 873 K에서 Ar+$H_2$ 혼합기체를 이용히여 수평관상로에서 $MoO_2$로 훤원하였으며, 반용속도를 배가스 중의 상대습도를 측정하여 계산하였다. 반응속도는 수소가스 분압과 반응속도에 따라 현저하게 증가하였다. 환원 반응초기에 $H_2O$의 발생속도가 급격하게 증가하였으며, 시간의 경과에 따라 배가스 중의 $H_2O$ 분압은 급격하게 감소하였다. 이 시기에 환원 반응율은 직선적으로 증가하였다. 환원반응 초기의 $MoO_3$에서 $MoO_2$로의 환원반응의 활성화 에너지는 73.56 kJ/mol로 계산되었다.

Keywords

References

  1. 손호상, 박종일, 최승덕, 2010: 고순도 몰리브덴 제조기술 현황, 재료마당, 23(3), pp. 15-23.
  2. 박민서 등, 2008: 몰리브덴 응용과 기술개발 동향, 재료마당, 21(4), pp. 15-19.
  3. 김병수 등, 2008: 몰리브덴 및 몰리브덴 화합물 제조기술 현황, 재료마당, 21(4), pp. 20-27.
  4. B. S. Kim et al., 2008: Study on the Reduction of Molybdenum Dioxide by Hydrogen, Materials Trans., 49(9), pp. 2147-2152. https://doi.org/10.2320/matertrans.MER2008103
  5. S. Majumdar et al., 2008: Kinetic Studies on Hydrogen Reduction of $MoO_3$ and Morphological Analysis of Reduced Mo Powder, Metall. & Mater. Trans. B, 39B(6), pp. 431-438.
  6. W. V. Schulmeyer and H. M. Ortner, 2002: Mechanisms of the hydrogen reduction of molybdenum oxides, Refractory Metals & Hard Materials, 20(4), pp. 261-269. https://doi.org/10.1016/S0263-4368(02)00029-X
  7. J. S. Lee and B. S. Kim, 2001: Synthesis and Related Kinetics of Nanocrystalline Ni by Hydrogen Reduction of NiO, Materials Trans., 42(8), pp. 1607-1612. https://doi.org/10.2320/matertrans.42.1607

Cited by

  1. High-temperature hydrogen-reduction process for the preparation of low-oxygen Mo powder from MoO3 vol.42, pp.4, 2017, https://doi.org/10.1016/j.ijhydene.2016.09.004
  2. Preparation of Low-Oxygen Mo Ingot by Optimizing Hydrogen Reduction and Subsequent Melting from MoO3 vol.54, pp.2, 2013, https://doi.org/10.2320/matertrans.M2012305