DOI QR코드

DOI QR Code

Synthesis of Ag/TiO2 Core/Shell Nanoparticles with Antibacterial Properties

  • Lin, Yue (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Qiqiang, Wang (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Xiaoming, Zhang (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Zhouping, Wang (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Wenshui, Xia (State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Yuming, Dong (School of Chemical and Material Engineering, Jiangnan University)
  • Received : 2011.02.17
  • Accepted : 2011.06.22
  • Published : 2011.08.20

Abstract

Monodispersed Ag/$TiO_2$ core/shell nanoparticles were synthesized in solution via colloid-seeded deposition process using Ag nanoparticles as colloid seeds and $Ti(SO_4)_2$ as Ti-source respectively. Silver nitrate was reduced to Ag nanoparticles with $N_2H_4{\cdot}H_2O$ in the presence of CTAB as stabilizing agent. The titania sols hydrolyzed by the $Ti(SO_4)_2$ solution deposited on the surface of Ag nanoparticles to form the Ag/$TiO_2$ core/shell nanoparticles. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed low amount of Ag ion leaching from the Ag/$TiO_2$ core/shell nanoparticles. The Ag/$TiO_2$ core/shell nanoparticles indicated excellent antibacterial effects against Escherichia coli and maintained long-term antibacterial property.

Keywords

References

  1. Jung, E. J.; Youn, D. K.; Lee, S. H.; No, H. K.; Ha, J. G.; Prinyawiwatkul, W. International Journal of Food Science and Technology 2010, 45, 676. https://doi.org/10.1111/j.1365-2621.2010.02186.x
  2. Sawai, J. Journal of Microbiological Methods 2003, 54, 177. https://doi.org/10.1016/S0167-7012(03)00037-X
  3. Holt, K. B.; Bard, A. J. Biochemistry 2005, 44, 13214. https://doi.org/10.1021/bi0508542
  4. Zhang, H. J.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 2905. https://doi.org/10.1021/es803450f
  5. Rai, M.; Yadav, A.; Gade, A. Biotechnology Advances 2009, 27, 76. https://doi.org/10.1016/j.biotechadv.2008.09.002
  6. Thiel, J.; Pakstis, L.; Buzby, S.; Raffi, M.; Ni, C.; Pochan, D. J. et al. Small 2007, 3, 799. https://doi.org/10.1002/smll.200600481
  7. Egger, S.; Lehmann, R. P.; Height, M. J.; Loessner, M. J.; Schuppler, M. Appl. Environ. Microbiol. 2009, 75, 2973. https://doi.org/10.1128/AEM.01658-08
  8. Amin, S. A.; Pazouki, M.; Hosseinnia, A. Powder Technology 2009, 196, 241. https://doi.org/10.1016/j.powtec.2009.07.021
  9. Liu, Y.; Wang, X. L.; Yang, F.; Yang, X. R. Microporous and Mesoporous Materials 2008, 114, 431. https://doi.org/10.1016/j.micromeso.2008.01.032
  10. Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T.; Abe, M. J. Am Chem. Soc. 2006, 128, 4944. https://doi.org/10.1021/ja058083c
  11. Hirakawa, T.; Kamat, P. V. J. Am Chem. Soc. 2005, 127, 3928. https://doi.org/10.1021/ja042925a
  12. Yue, L.; Gao, W.; Zhang, D. Y.; Guo, X. F.; Ding, W. P.; Chen, Y. J. Am Chem. Soc. 2006, 128, 11042. https://doi.org/10.1021/ja064198k
  13. Amin, S. A.; Pazouki, M.; Hosseinnia, A. Powder Technology 2009, 196, 241. https://doi.org/10.1016/j.powtec.2009.07.021
  14. Sondi, I.; Salopek-Sondi, B. J. Colloid Interface Sci. 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012

Cited by

  1. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties vol.31, pp.2, 2016, https://doi.org/10.1007/s10103-015-1855-x
  2. Study on Ag modified TiO2 thin films grown by sputtering deposition using sintered target vol.401, pp.None, 2014, https://doi.org/10.1016/j.jcrysgro.2013.12.018
  3. Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials vol.35, pp.10, 2011, https://doi.org/10.5012/bkcs.2014.35.10.2979
  4. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens vol.27, pp.8, 2011, https://doi.org/10.1088/0957-4484/27/8/085103
  5. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness vol.8, pp.None, 2011, https://doi.org/10.3762/bjnano.8.208
  6. Ag-doping regulates the cytotoxicity of TiO 2 nanoparticles via oxidative stress in human cancer cells vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-17559-9
  7. Antibacterial Activity of TiO2- and ZnO-Decorated with Silver Nanoparticles vol.3, pp.2, 2011, https://doi.org/10.3390/jcs3020061
  8. Nanoparticles Applied to Stone Buildings vol.15, pp.9, 2011, https://doi.org/10.1080/15583058.2019.1672828