DOI QR코드

DOI QR Code

Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces

  • Park, Jin-Won (Department of Chemical Engineering, College of Engineering, Seoul National University of Science and Technology)
  • Received : 2011.06.07
  • Accepted : 2011.06.24
  • Published : 2011.08.20

Abstract

We studied the physical properties of the mercaptopyruvic-acid layer formed on gold surfaces, which has the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. Surface force measurements were performed, using the atomic force microscope (AFM), between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The difference in the properties reflected the effect of the isoelectric point on the surface forces. The forces were interpreted for the evaluation with the law of mass action and the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8.0, was consistent with the prediction from the law. It was found that the mercaptopyruvic-acid layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8, which may be attributed to the ionized-functional-groups of the mercaptopyruvic-acid layer.

Keywords

References

  1. Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chemistry 2011, 3, 489.
  2. Peter, A.; Baia, M.; Toderas, F.; Lazar, M.; Tudoran, L. B.; Danciu, V. Studia Universitatis Babes-bolyai Chemia 2009, 54, 161.
  3. Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. J. Catalys. 2010, 12, 2344.
  4. Perlich, J.; Memesa, M.; Diethert, A.; Metwalli, E.; Wang, W.; Roth, S. V.; Timmann, A.; Gutmann, J. S.; Muller-Buschbauma, P. Chem. Phys. Chem. 2009, 10, 799. https://doi.org/10.1002/cphc.200800800
  5. Naseri, N.; Amiri, M.; Moshfegh A. Z. J. Phys. D - Appl. Phys. 2010, 43, 105405. https://doi.org/10.1088/0022-3727/43/10/105405
  6. Navalon, S.; de Miguel, M.; Martin R.; Alvaro, M.; Garcia, H. J. Am. Chem. Soc. 2011, 133, 2218. https://doi.org/10.1021/ja108816p
  7. Kafizasa, A.; Kellicia, S.; Darra, J. A.; Parkin, I. P. J. Photochem. & Photobiol. A-Chem. 2009, 204, 183. https://doi.org/10.1016/j.jphotochem.2009.03.017
  8. Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. https://doi.org/10.1126/science.281.5383.1647
  9. Sakurai, H.; Tsubota, S.; Haruta, M. Applied Catalysis A-General 1995, 102, 125.
  10. Li, X.; Fu, J.; Steinhart, M.; Kim, D. H.; Knoll, W. Bull. Korean Chem. Soc. 2007, 28, 1015. https://doi.org/10.5012/bkcs.2007.28.6.1015
  11. Schmid, G. Chem. Rev. 1992, 92, 1709. https://doi.org/10.1021/cr00016a002
  12. Jo, K.; Kang, H. J.; Yang, H. Bull. Korean Chem. Soc. 2011, 32, 728. https://doi.org/10.5012/bkcs.2011.32.2.728
  13. Cheow, W. S.; Li, S.; Hadinoto, K. Chem. Eng. Res. & Design 2010, 88, 673. https://doi.org/10.1016/j.cherd.2009.11.012
  14. Chou, J.; McFarland, E. W. Chem. Commun. 2004, 14, 1648.
  15. Dasog, M.; Scott, R. W. J. Langmuir 2007, 12, 3381.
  16. Sandhyarani, N.; Pradeep, T. Chem. Phys. Lett. 2001, 338, 33. https://doi.org/10.1016/S0009-2614(01)00230-5
  17. Brewer, N. J.; Rawsterne, R. E.; Kothari, S.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089. https://doi.org/10.1021/ja0155074
  18. Ducker, W. A.; Senden, T. J. Langmuir 1992, 8, 1831. https://doi.org/10.1021/la00043a024
  19. Binnig, G.; Quate, C.; Gerber, G. Phys. Rev. Lett. 1986, 56, 930. https://doi.org/10.1103/PhysRevLett.56.930
  20. Derjaguin, B. V.; Landau, L. Acta Physiochem. 1941, 14, 633.
  21. Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instrum. 1993, 64, 403. https://doi.org/10.1063/1.1144209
  22. Derjaguin, B. V. Trans. Faraday Soc. 1940, 36, 203.
  23. Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. 1978, 74, 975. https://doi.org/10.1039/f19787400975
  24. Shuin, V.; Kekicheff, P. J. Colloid Interface Sci. 1993, 155, 108. https://doi.org/10.1006/jcis.1993.1016
  25. Parker, J. L.; Christenson, H. K. J. Chem. Phys. 1988, 88, 8013. https://doi.org/10.1063/1.454260
  26. O'Shea, S. J.; Welland, M. E.; Pethica, J. B. Chem. Phys. Lett. 1994, 223, 336. https://doi.org/10.1016/0009-2614(94)00458-7
  27. Derjaguin, B. V. Kolloid Z. 1934, 69, 155. https://doi.org/10.1007/BF01433225
  28. Hartmann, U. Phys. Rev. B 1991, 43, 2404. https://doi.org/10.1103/PhysRevB.43.2404
  29. Israelachivili, J. N. Intermolecular & Surface Forces; Academic Press: New York, 1991; pp 183-188, 275-282.
  30. Feiler, A.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 5678. https://doi.org/10.1039/b005505k
  31. Verwey, E. J. W.; Overbeek J. T. G. Theory of the Stability of Lyophobic Colloids; Elsevier: New York, 1948; pp 51-63.
  32. Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Trans. Faraday Soc. 1966, 62, 1638. https://doi.org/10.1039/tf9666201638
  33. Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, U.K., 1987; pp 397-409.
  34. Chan, D. Y. C.; Pashley, R. M.; White, L. R. J. Colloild Interface Sci. 1980, 77, 283. https://doi.org/10.1016/0021-9797(80)90445-2
  35. Parker, J. L. Surf. Sci. 1994, 3, 205.
  36. Park, J.-W.; Ahn, D. J. Colloids & Surf. B: Biointerf. 2008, 62, 157. https://doi.org/10.1016/j.colsurfb.2007.09.020
  37. Ducker, W. A; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239. https://doi.org/10.1038/353239a0
  38. Horn, R. G.; Smith, D. T.; Haller, W. Chem. Phys. Lett. 1989, 162, 404. https://doi.org/10.1016/0009-2614(89)87066-6
  39. Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531. https://doi.org/10.1016/0021-9797(81)90348-9