DOI QR코드

DOI QR Code

Energy Transfer from Ethidium to Cationic Porphyrins Mediated by DNA and Synthetic Polynucleotides at Low Binding Densities

  • Jung, Jin-A (Department of Chemistry, Yeungnam University) ;
  • Jeon, Sun-Hee (Department of Chemistry, Yeungnam University) ;
  • Han, Sung-Wook (School of Herb Medicine Resource, Kyungwoon University) ;
  • Lee, Gil-Jun (School of Herb Medicine Resource, Kyungwoon University) ;
  • Bae, In-Ho (Department of Physics, Yeungnam University) ;
  • Kim, Seog-K. (Department of Chemistry, Yeungnam University)
  • Received : 2011.05.11
  • Accepted : 2011.06.21
  • Published : 2011.08.20

Abstract

The fluorescence of ethidium bound to DNA, poly[d(A-T)$_2$], and poly[d(G-C)$_2$] at a [ethidium]/[DNA] ratio of 0.005 was quenched by porphyrins when both ethidium and the porphyrins simultaneously bound to the same polynucleotide. The quenching was tested using the "inner sphere" and the "Forster resonance energy transfer" (FRET) models, with the latter found to contribute, at least in part, to the quenching. Meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) exhibited a higher quenching and FRET efficiency than cis-bis(N-methylpyridinium-4-yl)porphyrin (BMPyP) for all of the tested DNA and polynucleotides, demonstrating that energy transfer efficiency is affected by the number of positive charges of porphyrins.

Keywords

References

  1. Barton , J. K.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 6391-6393. https://doi.org/10.1021/ja00280a047
  2. Boon, E. M.; Barton, J. K. Curr. Opin. Struct. Biol. 2002, 12, 320- 329. https://doi.org/10.1016/S0959-440X(02)00327-5
  3. Giese, B. Curr. Opin. Chem. Biol. 2002, 6, 612-618. https://doi.org/10.1016/S1367-5931(02)00364-2
  4. Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2003, 42, 2454-2460. https://doi.org/10.1002/anie.200301629
  5. Wagenknecht, H.-A. Nat. Prod. Rep. 2006, 23, 973-1006. https://doi.org/10.1039/b504754b
  6. Giese, B. Med. Chem. 2006, 14, 6139-6143. https://doi.org/10.1016/j.bmc.2006.05.067
  7. Nunez, M. E.; Holmquist, G. P.; Barton, J. K. Biochemistry 2001, 40, 12465-12471. https://doi.org/10.1021/bi011560t
  8. Nunez, M. E. K.; Noyes, T.; Barton, J. K. Chem. Biol. 2002, 9, 403-415. https://doi.org/10.1016/S1074-5521(02)00121-7
  9. Kelly, S. O.; Jackson, N. M.; Hill, M. G.; Barton, J. K. Angew. Chem. Int. Ed. 1999, 38, 941-945. https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7
  10. Vainrub, A.; Pettitt, B. M. Chem. Phys. Lett. 2000, 323, 160-166. https://doi.org/10.1016/S0009-2614(00)00512-1
  11. Park, S. J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503- 1506.
  12. Porath, D.; Cuniberti, G.; Di Felice, G. R. Charge Transport in DNA-based Devices; In Topics in Current Chemistry; Shuster, G. B., Ed.; Springer: Berlin, 2004; 237, 183-228.
  13. Schuster, G. B. Acc. Chem. Res. 2000, 33, 253-260. https://doi.org/10.1021/ar980059z
  14. Giese, B. Acc. Chem. Res. 2000, 33, 631-636. https://doi.org/10.1021/ar990040b
  15. Takada, T.; Kawai, K.; Tojo, S.; Majima, T. Tetrahedron Lett. 2003, 44, 3851-3854. https://doi.org/10.1016/S0040-4039(03)00666-X
  16. Kawai, K.; Kodera, H.; Osakada, Y.; Majima, T. Nature Chem. 2009, 1, 156-159. https://doi.org/10.1038/nchem.171
  17. Lakhno, V. D.; Sultanov, V. B.; Pettitt, B. M. Phys. Lett. 2004, 400, 47-53.
  18. Rak, J.; Makowska, J.; Voityuk, A. A. Chem. Phys. 2006, 325, 567-574. https://doi.org/10.1016/j.chemphys.2006.02.002
  19. Sadowska-Aleksiejew, A.; Rak, J.; Voityuk, A. A. Chem. Phys. Lett. 2006, 429, 546-550. https://doi.org/10.1016/j.cplett.2006.08.050
  20. Lilley, D. M. J.; Wilson, T. J. Curr. Opin. Chem. Biol. 2000, 4, 507-517. https://doi.org/10.1016/S1367-5931(00)00124-1
  21. Murata, S.-I.; Kuoeba, J.; Gryczynski, G. I.; Lakowicz, J. R. Biopolymers 2000, 57, 306-315. https://doi.org/10.1002/1097-0282(2000)57:5<306::AID-BIP70>3.0.CO;2-7
  22. Kang, J. S.; Lakowicz, J. R. J. Biochem. Mol. Biol. 2001, 34, 551- 558.
  23. Malicka, J.; Gryczynski, I.; Fang, J.; Kusba, J.; Lakowicz, J. R. Anal. Biochem. 2003, 315, 160-169. https://doi.org/10.1016/S0003-2697(02)00710-8
  24. Lee, B. W.; Moon, S. J.; Youn, M. R.; Kim, J. H.; Jang, H. G.; Kim, S. K. Biophys. J. 2003, 85, 3865-3871. https://doi.org/10.1016/S0006-3495(03)74801-2
  25. Yun, B. H.; Kim, J.-O.; Lee, B. W.; Lincoln, P.; Nordén, B.; Kim, J.-M.; Kim, S. K. J. Phys. Chem. B. 2003, 107, 9858-9864. https://doi.org/10.1021/jp027828n
  26. Youn, M. R.; Moon, S. J.; Lee, B. W.; Lee, D.-J.; Kim, J.-M.; Kim, S. K. Bull. Korean Chem. Soc. 2005, 26, 537-542. https://doi.org/10.5012/bkcs.2005.26.4.537
  27. Choi, J. Y.; Lee, J.-M.; Lee, H.; Jung, M. J.; Kim, S. K.; Kim, J. M. Biophys. Chem. 2008, 134, 56-63. https://doi.org/10.1016/j.bpc.2008.01.006
  28. Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417-2424. https://doi.org/10.1021/ja044555w
  29. Jin, B.; Min, K. S.; Han, S. W.; Kim, S. K. Biophys. Chem. 2009, 144, 38-45. https://doi.org/10.1016/j.bpc.2009.06.003
  30. Larsen, T. A.; Goodsell, D. S.; Cascio, D.; Grzeskowiak, K.; Dickerson, R. E. J. Biomol. Struct. Dyn. 1989, 7, 477-491. https://doi.org/10.1080/07391102.1989.10508505
  31. Vlieghe, D.; Sponer, J.; Van Meervelt, L. Biochemistry 1999, 38, 16443-16451. https://doi.org/10.1021/bi9907882
  32. Kim, H.-K.; Kim, J.-M.; Kim, S. K.; Rodger, A.; Nordén, B. Biochemistry 1996, 35, 1187-1194. https://doi.org/10.1021/bi951913m
  33. Jung, J.-A.; Lee, S. W.; Jin, B.; Sohn, Y.; Kim, S. K. J. Phys. Chem. B 2010, 114, 7641-7648. https://doi.org/10.1021/jp1009687
  34. Jin, B.; Ahn, J. E.; Ko, J. H.; Wang, W.; Han, S. W.; Kim, S. K. J. Phys. Chem. B 2008, 112, 15875-15882. https://doi.org/10.1021/jp801274u
  35. Lee, Y.-A.; Lee, S.; Cho, T.-S.; Kim, C.; Han, S. W.; Kim, S. K. J. Phys. Chem. B 2002, 106, 11351-11355. https://doi.org/10.1021/jp025924i
  36. Lee, Y.-A.; Kim, J.-O.; Cho, T.-S.; Song, R.; Kim, S. K. J. Am. Chem. Soc. 2003, 125, 8106-8107. https://doi.org/10.1021/ja034499j
  37. Kim, J.-O.; Lee, Y.-A.; Yun, B. H.; Han, S. W.; Kwag, S. T.; Kim, S. K. Biophys. J. 2004, 86, 1012-1017. https://doi.org/10.1016/S0006-3495(04)74176-4
  38. Ismail, M.; Rodger, P. M.; Rodger, A. A. J. Biomol. Struct. Dyn. Conversation 2000, 11, 335-348.
  39. Lakowiz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, U.S.A., 2006.
  40. Lakowicz, J. R.; Piszczek, G.; Kang, J. S. Anal. Biochem. 2001, 288, 62-75. https://doi.org/10.1006/abio.2000.4860

Cited by

  1. Ion vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1165